1
|
Makri SP, Klonos PA, Marra G, Karathanasis AZ, Deligkiozi I, Valera MÁ, Mangas A, Nikolaidis N, Terzopoulou Z, Kyritsis A, Bikiaris DN. Structure-property relationships in renewable composites of poly(lactic acid) reinforced by low amounts of micro- and nano-kraft-lignin. SOFT MATTER 2024; 20:5014-5027. [PMID: 38885039 DOI: 10.1039/d4sm00622d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We investigate the direct and indirect effects of micro- and nano-kraft lignin, kL and NkL, respectively, at a quite low amount of 0.5 wt%, in poly(lactic acid) (PLA)-based composites. These renewable composites were prepared via two routes, either simple melt compounding or in situ reactive extrusion. The materials are selected and prepared using targeted methods in order to vary two variables, i.e., the size of kL and the synthetic method, while maintaining constant polymer chain lengths, L-/D-lactide isomer ratio and filler amounts. The direct/indirect effects were respectively investigated in the amorphous/semicrystalline state, as crystallinity plays in general a dominant role in polymers. The investigation involves structural, thermal and molecular mobility aspects. Non-extensive polymer-lignin interactions were recorded here, whereas the presence of the fillers led to both enhancements and suppressions of properties, e.g., glass transition, crystallization, melting temperatures, etc. The local and segmental molecular dynamics map of the said systems was constructed and is shown here for the first time, demonstrating both expected and unexpected trends. An interesting discrepancy between the trends in the calorimetric measurement against the dielectric Tg is revealed, providing indications for 'dynamical heterogeneities' in the composites as compared to neat PLA. The reactive extrusion as compared to compounding-based systems was found to exhibit stronger effects on crystallizability and mobility, most, probably due to the severe enhancement of the chains' diffusion. In general, the effects are more pronounced when employing nano-lignin compared to micro-lignin, which is the expected beneficial behaviour of nanocomposites vs. conventional composites. Interestingly, the variety of these effects can be easily manipulated by the proper selection of the preparation method and/or the thermal treatment under relatively mild conditions. The latter capability is actually desirable for processing and targeted applications and is proved here, once again, as an advantage of biobased polyesters such as PLA.
Collapse
Affiliation(s)
- Sofia P Makri
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
- Creative Nano PC, 43 Tatoiou, Metamorfosi, 14451 Athens, Greece
| | - Panagiotis A Klonos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
- Dielectrics Group, Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| | - Giacomo Marra
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Mechanochemistry & Reactive Extrusion, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | | | | | - Miguel Ángel Valera
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Mechanochemistry & Reactive Extrusion, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Ana Mangas
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Mechanochemistry & Reactive Extrusion, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Nikolaos Nikolaidis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Zoi Terzopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Apostolos Kyritsis
- Dielectrics Group, Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| |
Collapse
|
2
|
Črešnar KP, Plohl O, Zemljič LF. Functionalised Fibres as a Coupling Reinforcement Agent in Recycled Polymer Composites. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2739. [PMID: 38894002 PMCID: PMC11174083 DOI: 10.3390/ma17112739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
This study addresses the structure-property relationship within the green concept of wood fibres with cellulose nanofibre functionalised composites (nW-PPr) containing recycled plastic polyolefins, in particular, polypropylene (PP-r). It focuses especially on the challenges posed by nanoscience in relation to wood fibres (WF) and explores possible changes in the thermal properties, crystallinity, morphology, and mechanical properties. In a two-step methodology, wood fibres (50% wt%) were first functionalised with nanocellulose (nC; 1-9 wt%) and then, secondly, processed into composites using an extrusion process. The surface modification of nC improves its compatibility with the polymer matrix, resulting in improved adhesion, mechanical properties, and inherent biodegradability. The effects of the functionalised WF on the recycled polymer composites were investigated systematically and included analyses of the structure, crystallisation, morphology, and surface properties, as well as thermal and mechanical properties. Using a comprehensive range of techniques, including X-ray diffraction (XRD), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), zeta potential measurements, and dynamic mechanical analysis (DMA), this study aims to unravel the intricate interplay of factors affecting the performance and properties of the developed nanocellulose-functionalised wood fibre-polymer composites. The interfacial adhesion of the nW-PPr polymer composites, crystallisation process, and surface properties was improved due to the formation of an H-bond between the nW coupling agent and neat PP-r. In addition, the role of nW (1.0 wt%) as a nucleating agent resulted in increased crystallinity, or, on the other hand, promoted the interfacial interaction with the highest amount (3.0% wt%, 9.0% wt%) of nW in the PP-r preferentially between the nW and neat PP-r, and also postponed the crystallisation temperature. The changes in the isoelectric point of the nW-PPr polymer composites compared to the neat PP-r polymer indicate the acid content of the polymer composite and, consequently, the final surface morphology. Finally, the higher storage modulus of the composites compared to neat r-PP shows a dependence on improved crystallinity, morphology, and adhesion. It was clear that the results of this study contribute to a better understanding of sustainable materials and can drive the development of environmentally friendly composites applied in packaging.
Collapse
Affiliation(s)
- Klementina Pušnik Črešnar
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (O.P.); (L.F.Z.)
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Olivija Plohl
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (O.P.); (L.F.Z.)
| | - Lidija Fras Zemljič
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (O.P.); (L.F.Z.)
| |
Collapse
|
3
|
Stanley J, Xanthopoulou E, Zemljič LF, Klonos PA, Kyritsis A, Lambropoulou DA, Bikiaris DN. Fabrication of Poly(ethylene furanoate)/Silver and Titanium Dioxide Nanocomposites with Improved Thermal and Antimicrobial Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1606. [PMID: 38612120 PMCID: PMC11012300 DOI: 10.3390/ma17071606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Poly(ethylene furanoate) (PEF)-based nanocomposites were fabricated with silver (Ag) and titanium dioxide (TiO2) nanoparticles by the in-situ polymerization method. The importance of this research work is to extend the usage of PEF-based nanocomposites with improved material properties. The PEF-Ag and PEF-TiO2 nanocomposites showed a significant improvement in color concentration, as determined by the color colorimeter. Scanning electron microscopy (SEM) photographs revealed the appearance of small aggregates on the surface of nanocomposites. According to crystallinity investigations, neat PEF and nanocomposites exhibit crystalline fraction between 0-6%, whereas annealed samples showed a degree of crystallinity value above 25%. Combining the structural and molecular dynamics observations from broadband dielectric spectroscopy (BDS) measurements found strong interactions between polymer chains and nanoparticles. Contact angle results exhibited a decrease in the wetting angle of nanocomposites compared to neat PEF. Finally, antimicrobial studies have been conducted, reporting a significant rise in inhibition of over 15% for both nanocomposite films against gram-positive and gram-negative bacteria. From the overall results, the synthesized PEF-based nanocomposites with enhanced thermal and antimicrobial properties may be optimized and utilized for the secondary packaging (unintended food-contact) materials.
Collapse
Affiliation(s)
- Johan Stanley
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (J.S.); (E.X.)
| | - Eleftheria Xanthopoulou
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (J.S.); (E.X.)
| | - Lidija Fras Zemljič
- Faculty of Mechanical Engineering, University of Maribor, SI-2000 Maribor, Slovenia;
| | - Panagiotis A. Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780 Athens, Greece; (P.A.K.); (A.K.)
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780 Athens, Greece; (P.A.K.); (A.K.)
| | - Dimitra A. Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-57001 Thessaloniki, Greece
| | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (J.S.); (E.X.)
| |
Collapse
|
4
|
Stanley J, Xanthopoulou E, Finšgar M, Zemljič LF, Klonos PA, Kyritsis A, Koltsakidis S, Tzetzis D, Lambropoulou DA, Baciu D, Steriotis TA, Charalambopoulou G, Bikiaris DN. Synthesis of Poly(ethylene furanoate) Based Nanocomposites by In Situ Polymerization with Enhanced Antibacterial Properties for Food Packaging Applications. Polymers (Basel) 2023; 15:4502. [PMID: 38231946 PMCID: PMC10708257 DOI: 10.3390/polym15234502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Poly(ethylene 2,5-furandicarboxylate) (PEF)-based nanocomposites containing Ce-bioglass, ZnO, and ZrO2 nanoparticles were synthesized via in situ polymerization, targeting food packaging applications. The nanocomposites were thoroughly characterized, combining a range of techniques. The successful polymerization was confirmed using attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, and the molecular weight values were determined indirectly by applying intrinsic viscosity measurements. The nanocomposites' structure was investigated by depth profiling using time-of-flight secondary ion mass spectrometry (ToF-SIMS), while color measurements showed a low-to-moderate increase in the color concentration of all the nanocomposites compared to neat PEF. The thermal properties and crystallinity behavior of the synthesized materials were also examined. The neat PEF and PEF-based nanocomposites show a crystalline fraction of 0-5%, and annealed samples of both PEF and PEF-based nanocomposites exhibit a crystallinity above 20%. Furthermore, scanning electron microscopy (SEM) micrographs revealed that active agent nanoparticles are well dispersed in the PEF matrix. Contact angle measurements showed that incorporating nanoparticles into the PEF matrix significantly reduces the wetting angle due to increased roughness and introduction of the polar -OH groups. Antimicrobial studies indicated a significant increase in inhibition of bacterial strains of about 9-22% for Gram-positive bacterial strains and 5-16% for Gram-negative bacterial strains in PEF nanocomposite films, respectively. Finally, nanoindentation tests showed that the ZnO-based nanocomposite exhibits improved hardness and elastic modulus values compared to neat PEF.
Collapse
Affiliation(s)
- Johan Stanley
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (J.S.); (E.X.)
| | - Eleftheria Xanthopoulou
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (J.S.); (E.X.)
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia;
| | - Lidija Fras Zemljič
- Faculty of Mechanical Engineering, University of Maribor, SI-2000 Maribor, Slovenia;
| | - Panagiotis A. Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780 Athens, Greece; (P.A.K.); (A.K.)
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780 Athens, Greece; (P.A.K.); (A.K.)
| | - Savvas Koltsakidis
- Digital Manufacturing and Materials Characterization Laboratory, International Hellenic University, GR-57001 Thessaloniki, Greece; (S.K.); (D.T.)
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, International Hellenic University, GR-57001 Thessaloniki, Greece; (S.K.); (D.T.)
| | - Dimitra A. Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-57001 Thessaloniki, Greece
| | - Diana Baciu
- National Center for Scientific Research “Demokritos”, GR-15341 Ag. Paraskevi Attikis, Greece; (D.B.); (T.A.S.); (G.C.)
| | - Theodore A. Steriotis
- National Center for Scientific Research “Demokritos”, GR-15341 Ag. Paraskevi Attikis, Greece; (D.B.); (T.A.S.); (G.C.)
| | - Georgia Charalambopoulou
- National Center for Scientific Research “Demokritos”, GR-15341 Ag. Paraskevi Attikis, Greece; (D.B.); (T.A.S.); (G.C.)
| | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (J.S.); (E.X.)
| |
Collapse
|
5
|
Stanley J, Terzopoulou Z, Klonos PA, Zamboulis A, Xanthopoulou E, Koltsakidis S, Tzetzis D, Zemljič LF, Lambropoulou DA, Kyritsis A, Papageorgiou GZ, Bikiaris DN. Effect of Monomer Type on the Synthesis and Properties of Poly(Ethylene Furanoate). Polymers (Basel) 2023; 15:2707. [PMID: 37376353 DOI: 10.3390/polym15122707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
This work aimed to produce bio-based poly(ethylene furanoate) (PEF) with a high molecular weight using 2,5-furan dicarboxylic acid (FDCA) or its derivative dimethyl 2,5-furan dicarboxylate (DMFD), targeting food packaging applications. The effect of monomer type, molar ratios, catalyst, polycondensation time, and temperature on synthesized samples' intrinsic viscosities and color intensity was evaluated. It was found that FDCA is more effective than DMFD in producing PEF with higher molecular weight. A sum of complementary techniques was employed to study the structure-properties relationships of the prepared PEF samples, both in amorphous and semicrystalline states. The amorphous samples exhibited an increase in glass transition temperature of 82-87 °C, and annealed samples displayed a decrease in crystallinity with increasing intrinsic viscosity, as analyzed by differential scanning calorimetry and X-ray diffraction. Dielectric spectroscopy showed moderate local and segmental dynamics and high ionic conductivity for the 2,5-FDCA-based samples. The spherulite size and nuclei density of samples improved with increased melt crystallization and viscosity, respectively. The hydrophilicity and oxygen permeability of the samples were reduced with increased rigidity and molecular weight. The nanoindentation test showed that the hardness and elastic modulus of amorphous and annealed samples is higher at low viscosities due to high intermolecular interactions and degree of crystallinity.
Collapse
Affiliation(s)
- Johan Stanley
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Zoi Terzopoulou
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Panagiotis A Klonos
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
- Department of Physics, Zografou Campus, National Technical University of Athens, 15780 Athens, Greece
| | - Alexandra Zamboulis
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | | | - Savvas Koltsakidis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 14 km Thessaloniki, 57001 N. Moudania, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 14 km Thessaloniki, 57001 N. Moudania, Greece
| | - Lidija Fras Zemljič
- Faculty of Mechanical Engineering, University of Maribor, SI-2000 Maribor, Slovenia
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-570 01 Thessaloniki, Greece
| | - Apostolos Kyritsis
- Department of Physics, Zografou Campus, National Technical University of Athens, 15780 Athens, Greece
| | - George Z Papageorgiou
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| |
Collapse
|
6
|
Karlinskii BY, Ananikov VP. Recent advances in the development of green furan ring-containing polymeric materials based on renewable plant biomass. Chem Soc Rev 2023; 52:836-862. [PMID: 36562482 DOI: 10.1039/d2cs00773h] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fossil resources are rapidly depleting, forcing researchers in various fields of chemistry and materials science to switch to the use of renewable sources and the development of corresponding technologies. In this regard, the field of sustainable materials science is experiencing an extraordinary surge of interest in recent times due to the significant advances made in the development of new polymers with desired and controllable properties. This review summarizes important scientific reports in recent times dedicated to the synthesis, construction and computational studies of novel sustainable polymeric materials containing unchanged (pseudo)aromatic furan cores in their structure. Linear polymers for thermoplastics, branched polymers for thermosets and other crosslinked materials are emerging materials to highlight. Various polymer blends and composites based on sustainable polyfurans are also considered as pathways to achieve high-value-added products.
Collapse
Affiliation(s)
- Bogdan Ya Karlinskii
- Tula State University, Lenin pr. 92, Tula, 300012, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| |
Collapse
|
7
|
Incorporating Graphene Nanoplatelets and Carbon Nanotubes in Biobased Poly(ethylene 2,5-furandicarboxylate): Fillers' Effect on the Matrix's Structure and Lifetime. Polymers (Basel) 2023; 15:polym15020401. [PMID: 36679281 PMCID: PMC9863989 DOI: 10.3390/polym15020401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Poly(ethylene 2,5-furandicarboxylate) (PEF) nanocomposites reinforced with Graphene nanoplatelets (GNPs) and Carbon nanotubes (CNTs) were in situ synthesized in this work. PEF is a biobased polyester with physical properties and is the sustainable counterpart of Polyethylene Terephthalate (PET). Its low crystallizability affects the processing of the material, limiting its use to packaging, films, and textile applications. The crystallization promotion and the reinforcement of PEF can lead to broadening its potential applications. Therefore, PEF nanocomposites reinforced with various loadings of GNPs, CNTs, and hybrids containing both fillers were prepared, and the effect of each filler on their structural characteristics was investigated by X-ray Diffraction (XRD), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), and X-Ray Photoelectron Spectroscopy (XPS). The morphology and structural properties of a hybrid PEF nanocomposite were evaluated by Transmission Electron Microscopy (TEM). The thermo-oxidative degradation, as well as lifetime predictions of PEF nanocomposites, in an ambient atmosphere, were studied using Thermogravimetric Analysis (TGA). Results showed that the fillers' incorporation in the PEF matrix induced changes in the lamellar thickness and increased crystallinity up to 27%. TEM analysis indicated the formation of large CNTs aggregates in the case of the hybrid PEF nanocomposite as a result of the ultrasonication process. Finally, the presence of CNTs caused the retardation of PEF's carbonization process. This led to a slightly longer lifetime under isothermal conditions at higher temperatures, while at ambient temperature the PEF nanocomposites' lifetime is shorter, compared to neat PEF.
Collapse
|
8
|
Chen M, Jiang Z, Qiu Z. Synthesis, thermal, and mechanical properties of fully biobased Poly(hexamethylene 2,5-furandicarboxylate-co-diglycolate) copolyesters. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Bouyahya C, Bikiaris ND, Zamboulis A, Kyritsis A, Majdoub M, Klonos PA. Crystallization and molecular mobility in renewable semicrystalline copolymers based on polycaprolactone and polyisosorbide. SOFT MATTER 2022; 18:9216-9230. [PMID: 36426754 DOI: 10.1039/d2sm01198k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A series of novel block copolymers based on two biodegradable polymers, poly(ε-caprolactone), PCL, and poly(isosorbide), PIS, with PIS fractions 5, 10, and 25 wt%, are studied herein. The aim is to assess the effects of the amorphous PIS phase on the properties of the semicrystalline PCL (majority), in addition to the synthesis strategy. The latter involved the polymerization of caprolactone onto initial PIS of low molar mass, resulting, thus, in gradually shorter PCL blocks when the starting amount of PIS is increased. The structure-property relationship investigation, with an emphasis on molecular mobility and crystallization, involves the following sum of complementary techniques: differential scanning calorimetry, dielectric spectroscopy, polarized optical microscopy and X-ray diffraction. The molecular mobility map for these PCL/PIS and initial PIS is drawn here for the first time. Despite the high glass transition temperature of PIS (Tg ∼ 51 °C) compared to that of PCL (-66 °C), the Tg of the copolymers barely changes, as it is mainly ruled by crystallinity. The latter seems to be facilitated in the copolymers, in both the amount and the rate. The local molecular mobility of PCL and PCL/PIS consists of faster γPCL relaxation which is unaffected in the copolymers, whereas the slower βPCL process arising from the backbone ester group rotation exhibits a systematic deceleration in the presence of PIS. A connection between such local motions and the corresponding segmental α relaxation, observed previously in other polyesters, is also found to be true here. Apart from that, the dielectric Tg as well as the cooperativity of the polymer chains drop moderately, which indicates spatial confinement between the PCL crystals, whereas correlations with the looser lamellar chain packing within the spherulites are gained. The relaxations of initial PIS, i.e., γPIS, βPIS and αPIS, could not be resolved within the copolymers. Along with other properties, such as ionic conductivity, we conclude to the homogeneity of our systems, with sufficient PCL/PIS distribution.
Collapse
Affiliation(s)
- Chaima Bouyahya
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
- Laboratoire des Interfaces et Matériaux Avancés, Université de Monastir, 5000 Monastir, Tunisia.
| | - Nikolaos D Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Alexandra Zamboulis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| | - Mustapha Majdoub
- Laboratoire des Interfaces et Matériaux Avancés, Université de Monastir, 5000 Monastir, Tunisia.
| | - Panagiotis A Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| |
Collapse
|
10
|
Graphene Nanoplatelets' Effect on the Crystallization, Glass Transition, and Nanomechanical Behavior of Poly(ethylene 2,5-furandicarboxylate) Nanocomposites. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196653. [PMID: 36235190 PMCID: PMC9571983 DOI: 10.3390/molecules27196653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Poly(ethylene 2,5-furandicarboxylate) (PEF) nanocomposites reinforced with various content of graphene nanoplatelets (GNPs) were synthesized in situ in this work. PEF is a widely known biobased polyester with promising physical properties and is considered as the sustainable counterpart of PET. Despite its exceptional gas barrier and mechanical properties, PEF presents with a low crystallization rate. In this context, a small number of GNPs were incorporated into the material to facilitate the nucleation and overall crystallization of the matrix. Kinetic analysis of both the cold and melt crystallization processes of the prepared materials was achieved by means of differential scanning calorimetry (DSC). The prepared materials’ isothermal crystallization from the glass and melt states was studied using the Avrami and Hoffman–Lauritzen theories. The Dobreva method was applied for the non-isothermal DSC measurements to calculate the nucleation efficiency of the GNPs on the PEF matrix. Furthermore, Vyazovkin’s isoconversional method was employed to estimate the effective activation energy values of the amorphous materials’ glass transition. Finally, the nanomechanical properties of the amorphous and semicrystalline PEF materials were evaluated via nanoindentation measurements. It is shown that the GNPs facilitate the crystallization process through heterogeneous nucleation and, at the same time, improve the nanomechanical behavior of PEF, with the semicrystalline samples presenting with the larger enhancements.
Collapse
|
11
|
Chen M, Jiang Z, Qiu Z. In Situ Synthesis, Crystallization Behavior, and Mechanical Property of Biobased Poly(hexamethylene 2,5-furandicarboxylate)/Multiwalled Carbon Nanotube Nanocomposites. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingkun Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiguo Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhaobin Qiu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
12
|
Molecular mobility, crystallization and melt-memory investigation of molar mass effects on linear and hydroxyl-terminated Poly(ε-caprolactone). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Long L, Ye B, Wei J, Wu B, Li Y, Wang Z. Structure and enhanced mechanical properties of biobased poly(ethylene 2,5-furandicarboxylate) by incorporating with low loadings of talc platelets. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|