1
|
Sneha Ravi A, Dalvi S. Liquid Marbles and Drops on Superhydrophobic Surfaces: Interfacial Aspects and Dynamics of Formation: A Review. ACS OMEGA 2024; 9:12307-12330. [PMID: 38524492 PMCID: PMC10956110 DOI: 10.1021/acsomega.3c07657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Liquid marbles (LMs) are droplets encapsulated with powders presenting varied roughness and wettability. These LMs have garnered a lot of attention due to their dual properties of leakage-free and quick transport on both solid and liquid surfaces. These droplets are in a Cassie-Baxter wetting state sitting on both roughness and air pockets existing between particles. They are also reminiscent of the state of a drop on a superhydrophobic (SH) surface. In this review, LMs and bare droplets on SH surfaces are comparatively investigated in terms of two aspects: interfacial and dynamical. LMs present a fascinating class of soft matter due to their superior interfacial activity and their remarkable stability. Inherently hydrophobic powders form stable LMs by simple rolling; however, particles with defined morphologies and chemistries contribute to the varied stability of LMs. The factors contributing to this interesting robustness with respect to bare droplets are then identified by tests of stability such as evaporation and compression. Next, the dynamics of the impact of a drop on a hydrophobic powder bed to form LMs is studied vis-à̀-vis that of drop impact on flat surfaces. The knowledge from drop impact phenomena on flat surfaces is used to build and complement insights to that of drop impact on powder surfaces. The maximum spread of the drop is empirically understood in terms of dimensionless numbers, and their drawbacks are highlighted. Various stages of drop impact-spreading, retraction and rebound, splashing, and final outcome-are systematically explored on both solid and hard surfaces. The implications of crater formation and energy dissipations are discussed in the case of granular beds. While the drop impact on solid surfaces is extensively reviewed, deep interpretation of the drop impact on granular surfaces needs to be improved. Additionally, the applications of each step in the sequence of drop impact phenomena on both substrates are also identified. Next, the criterion for the formation of peculiar jammed LMs was examined. Finally, the challenges and possible future perspectives are envisaged.
Collapse
Affiliation(s)
- Apoorva Sneha Ravi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| | - Sameer Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| |
Collapse
|
2
|
Bielas R, Kubiak T, Molcan M, Dobosz B, Rajnak M, Józefczak A. Biocompatible Hydrogel-Based Liquid Marbles with Magnetosomes. MATERIALS (BASEL, SWITZERLAND) 2023; 17:99. [PMID: 38203953 PMCID: PMC10779466 DOI: 10.3390/ma17010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Liquid marbles are widely known for their potential biomedical applications, especially due to their versatility and ease of preparation. In the present work, we prepared liquid marbles with various cores composed of water, agar-based hydrogels, magnetic fluids, or non-aqueous substances. As a coating material, we used biocompatible particles of plant origin, such as turmeric grains and Lycopodium pollen. Additionally, we provided marbles with magnetic properties by incorporating either magnetosomes or iron oxide nanoparticles as a powder or by injecting another magnetic fluid. Structures obtained in this way were stable and susceptible to manipulation by an external magnetic field. The properties of the magnetic components of our marbles were verified using electron paramagnetic resonance (EPR) spectroscopy and vibrating sample magnetometry (VSM). Our approach to encapsulation of active substances such as antibiotics within a protective hydrogel core opens up new perspectives for the delivery of hydrophobic payloads to the inherently hydrophilic biological environment. Additionally, hydrogel marbles enriched with magnetic materials showed promise as biocompatible heating agents under alternating magnetic fields. A significant innovation of our research was also the fabrication of composite structures in which the gel-like core was surrounded without mixing by a magnetic fluid covered on the outside by the particle shell. Our liquid marbles, especially those with a hydrogel core and magnetic content, due to the ease of preparation and favorable properties, have great potential for biomedical use. The fact that we were able to simultaneously produce, functionalize (by filling with predefined cargo), and manipulate (by means of an external magnetic field) several marbles also seems to be important from an application point of view.
Collapse
Affiliation(s)
- Rafał Bielas
- Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| | - Tomasz Kubiak
- Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| | - Matus Molcan
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia; (M.M.); (M.R.)
| | - Bernadeta Dobosz
- Institute of Physics, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| | - Michal Rajnak
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia; (M.M.); (M.R.)
- Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
| | - Arkadiusz Józefczak
- Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| |
Collapse
|
3
|
Liu Y, Xu M, Portela LM, Garbin V. Diffusion across particle-laden interfaces in Pickering droplets. SOFT MATTER 2023; 20:94-102. [PMID: 38047385 DOI: 10.1039/d3sm01262j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Emulsions stabilized by nanoparticles, known as Pickering emulsions, exhibit remarkable stability, which enables applications ranging from encapsulation, to advanced materials, to chemical conversion. The layer of nanoparticles at the interface of Pickering droplets is a semi-permeable barrier between the two liquid phases, which can affect the rate of release of encapsulates, and the interfacial transfer of reactants and products in biphasic chemical conversion. A gap in our fundamental understanding of diffusion in multiphase systems with particle-laden interfaces currently limits the optimal development of these applications. To address this gap, we developed an experimental approach for in situ, real-time quantification of concentration fields in Pickering droplets in a Hele-Shaw geometry and investigated the effect of the layer of nanoparticles on diffusion of solute across a liquid-liquid interface. The experiments did not reveal a significant hindrance on the diffusion of solute across an interface densely covered by nanoparticles. We interpret this result using an unsteady diffusion model to predict the spatio-temporal evolution of the concentration of solute with a particle-laden interface. We find that the concentration field is only affected in the immediate vicinity of the layer of particles, where the area available for diffusion is affected by the particles. This defines a characteristic time scale for the problem, which is the time for diffusion across the layer of particles. The far-field concentration profile evolves towards that of a bare interface. This localized effect of the particle hindrance is not measurable in our experiments, which take place over a much longer time scale. Our model also predicts that the hindrance by particles can be more pronounced depending on the particle size and physicochemical properties of the liquids and can ultimately affect performance in applications.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands.
| | - Mingjun Xu
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands.
| | - Luis M Portela
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands.
| | - Valeria Garbin
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands.
| |
Collapse
|
4
|
Tenjimbayashi M, Mouterde T, Roy PK, Uto K. Liquid marbles: review of recent progress in physical properties, formation techniques, and lab-in-a-marble applications in microreactors and biosensors. NANOSCALE 2023; 15:18980-18998. [PMID: 37990550 DOI: 10.1039/d3nr04966c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Liquid marbles (LMs) are nonsticking droplets whose surfaces are covered with low-wettability particles. Owing to their high mobility, shape reconfigurability, and widely accessible liquid/particle possibilities, the research on LMs has flourished since 2001. Their physical properties, fabrication mechanisms, and functionalisation capabilities indicate their potential for various applications. This review summarises the fundamental properties of LMs, the recent advances (mainly works published in 2020-2023) in the concept of LMs, physical properties, formation methods, LM-templated material design, and biochemical applications. Finally, the potential development and variations of LMs are discussed.
Collapse
Affiliation(s)
- Mizuki Tenjimbayashi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Timothée Mouterde
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Pritam Kumar Roy
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Koichiro Uto
- Research Center for Macromolecules and Biomaterials, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
5
|
Sajjad M, Li H, Raza A, AlMarzooqi F, Zhang T. Insights into capillary-driven motion of micro-particles interacting with advancing meniscus on a substrate. SOFT MATTER 2022; 18:8894-8905. [PMID: 36377732 DOI: 10.1039/d2sm01134d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Liquid-particle interactions at the micro-scale are quite different from the corresponding macro-scale interactions due to the substantial role of capillary forces. Herein, we explore the interaction of a single micro-particle with an air-liquid-substrate contact line. The interaction features ballistic-like motion of micro-particles toward the interacting three-phase contact line with velocities as high as 0.46 m s-1. Through high-speed optical imaging, we elucidate the interaction mechanism and associated intertwined dynamics, including evolution and backward dragging of the transient air-liquid-particle contact line, capillary-inertial launch of micro-particles and its subsequent trapping at the air-liquid-substrate contact line. Based on the force analysis, we build a model to predict the particle velocity profile during the interaction. Our experimental results show that both hydrophilic and hydrophobic micro-particles exhibit capillary-driven motion. The maximum velocity of the hydrophobic particle, as well as its total displacement, is smaller than that of the hydrophilic one with the same particle size. Micro-particle lifting, like dust removal from self-cleaning surfaces, is observed when the dynamic contact angle of the air-liquid-substrate contact line is sufficiently high (i.e. >100°). We also develop criteria for the capillary-driven motion of particles and predict the critical size for particle motion. These findings are valuable to various applications including capillary-driven self-cleaning, pickering emulsions, micro-scale fluid structure interactions and capillary dynamics in porous media.
Collapse
Affiliation(s)
- Muhammad Sajjad
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates.
- Department of Mechanical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, P. O. Box 64200, Pakistan
| | - Hongxia Li
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Aikifa Raza
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Faisal AlMarzooqi
- Department of Chemical Engineering, Masdar Institute, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates
| | - TieJun Zhang
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
Wang Z, Zhu G, Wang Q, Ding K, Tong Y, Gao C. Preparation of hollow granules as micro-adsorber for uranium extraction from aqueous solutions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Guo X, Xue N, Zhang M, Ettelaie R, Yang H. A supraparticle-based biomimetic cascade catalyst for continuous flow reaction. Nat Commun 2022; 13:5935. [PMID: 36209156 PMCID: PMC9547976 DOI: 10.1038/s41467-022-33756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Robust millimeter-sized spherical particles with controlled compositions and microstructures hold promises of important practical applications especially in relation to continuous flow cascade catalysis. However, the efficient fabrication methods for producing such particles remain scare. Here, we demonstrate a liquid marble approach to fabricate robust mm-sized porous supraparticles (SPs) through the bottom-up assembly of silica nanoparticles in the presence of strength additive or surface interactions, without the need for the specific liquid-repellent surfaces used by the existing methods. As the proof of the concept, our method was exemplified by fabricating biomimetic cascade catalysts through assembly of two types of well-defined catalytically active nanoparticles. The obtained SP-based cascade catalysts work well in industrially preferred fixed-bed reactors, exhibiting excellent catalysis efficiency, controlled reaction kinetics, high enantioselectivity (99% ee) and outstanding stability (200~500 h) in the cascades of ketone hydrogenation-kinetic resolution and amine racemization-kinetic resolution. The excellent catalytic performances are attributed to the structural features, reconciling close proximity of different catalytic sites and their sufficient spatial isolation. Robust millimeter-sized spherical particles with controlled compositions and microstructures hold promises of important practical applications. Here the authors develop a liquid marble method to facilely fabricate robust millimeter-sized supraparticles with controlled microstructures through the bottom-up assembly of silica nanoparticles.
Collapse
Affiliation(s)
- Xiaomiao Guo
- School of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China
| | - Nan Xue
- School of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China
| | - Ming Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China
| | - Rammile Ettelaie
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China. .,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, 030006, Taiyuan, China.
| |
Collapse
|
8
|
Guzmán E, Martínez-Pedrero F, Calero C, Maestro A, Ortega F, Rubio RG. A broad perspective to particle-laden fluid interfaces systems: from chemically homogeneous particles to active colloids. Adv Colloid Interface Sci 2022; 302:102620. [PMID: 35259565 DOI: 10.1016/j.cis.2022.102620] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/12/2023]
Abstract
Particles adsorbed to fluid interfaces are ubiquitous in industry, nature or life. The wide range of properties arising from the assembly of particles at fluid interface has stimulated an intense research activity on shed light to the most fundamental physico-chemical aspects of these systems. These include the mechanisms driving the equilibration of the interfacial layers, trapping energy, specific inter-particle interactions and the response of the particle-laden interface to mechanical perturbations and flows. The understanding of the physico-chemistry of particle-laden interfaces becomes essential for taking advantage of the particle capacity to stabilize interfaces for the preparation of different dispersed systems (emulsions, foams or colloidosomes) and the fabrication of new reconfigurable interface-dominated devices. This review presents a detailed overview of the physico-chemical aspects that determine the behavior of particles trapped at fluid interfaces. This has been combined with some examples of real and potential applications of these systems in technological and industrial fields. It is expected that this information can provide a general perspective of the topic that can be exploited for researchers and technologist non-specialized in the study of particle-laden interfaces, or for experienced researcher seeking new questions to solve.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| | - Fernando Martínez-Pedrero
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Carles Calero
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Avenida Diagonal 647, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia, IN2UB, Universitat de Barcelona, Avenida, Diagonal 647, 08028 Barcelona, Spain
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU)-Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| |
Collapse
|
9
|
|
10
|
Kumar B, Chatterjee S, Agrawal A, Bhardwaj R. Evaluating a transparent coating on a face shield for repelling airborne respiratory droplets. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:111705. [PMID: 34803361 PMCID: PMC8597715 DOI: 10.1063/5.0073724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/26/2021] [Indexed: 05/05/2023]
Abstract
A face shield is an important personal protective equipment to avoid the airborne transmission of COVID-19. We assess a transparent coating on a face shield that repels airborne respiratory droplets to mitigate the spread of COVID-19. The surface of the available face shield is hydrophilic and exhibits high contact angle hysteresis. The impacting droplets stick on it, resulting in an enhanced risk of fomite transmission of the disease. Further, it may get wetted in the rain, and moisture may condense on it in the presence of large humidity, which may blur the user's vision. Therefore, the present study aims to improve the effectiveness of a face shield. Our measurements demonstrate that the face shield, coated by silica nanoparticles solution, becomes superhydrophobic and results in a nominal hysteresis to the underlying surface. We employ high-speed visualization to record the impact dynamics of microliter droplets with a varying impact velocity and angle of attack on coated and non-coated surfaces. While the droplet on non-coated surface sticks to it, in the coated surface the droplets bounce off and roll down the surface, for a wide range of Weber number. We develop an analytical model and present a regime map of the bouncing and non-bouncing events, parametrized with respect to the wettability, hysteresis of the surface, and the Weber number. The present measurements provide the fundamental insights of the bouncing droplet impact dynamics and show that the coated face shield is potentially more effective in suppressing the airborne and fomite transmission.
Collapse
Affiliation(s)
- Bibek Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sanghamitro Chatterjee
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Amit Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rajneesh Bhardwaj
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
11
|
Odokonyero K, Gallo A, Mishra H. Nature-inspired wax-coated jute bags for reducing post-harvest storage losses. Sci Rep 2021; 11:15354. [PMID: 34321499 PMCID: PMC8319191 DOI: 10.1038/s41598-021-93247-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/22/2021] [Indexed: 11/09/2022] Open
Abstract
Post-harvest storage of grains is crucial for food and feed reserves and facilitating seeds for planting. Ironically, post-harvest losses continue to be a major food security threat in the developing world, especially where jute bags are utilized. While jute fabrics flaunt mechanical strength and eco-friendliness, their water-loving nature has proven to be their Achilles heel. Increased relative humidity and/or precipitation wets jute, thereby elevating the moisture content of stored seeds and causing fungal growth. This reduces seed longevity, viability, and nutritional value. To address this crucial weakness of jute bags, we followed a nature-inspired approach to modify their surface microtexture and chemical make-up via alkali and wax treatments, respectively. The resulting wax-coated jute bags (WCJBs) exhibited significant water-repellency to simulated rainfall and airborne moisture compared to control jute bags (CJBs). A 2 months-long seed storage experiment with wheat (Triticum aestivum) grains exposed to 55%, 75%, and 98% relative humidity environments revealed that the grains stored in the WCJBs exhibited 7.5-4% lesser (absolute) moisture content than those in the CJBs. Furthermore, WCJBs-stored grains exhibited a 35-12% enhancement in their germination efficacy over the controls. This nature-inspired engineering solution could contribute towards reducing post-harvest losses in the developing world, where jute bags are extensively utilized for grain storage.
Collapse
Affiliation(s)
- Kennedy Odokonyero
- Interfacial Lab, Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Adair Gallo
- Interfacial Lab, Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Himanshu Mishra
- Interfacial Lab, Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|