1
|
Kato R, Mikami T, Kato T. 2D Photonic Colloidal Liquid Crystals Composed of Self-Assembled Rod-Shaped Particles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404396. [PMID: 38877780 DOI: 10.1002/adma.202404396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Photonic crystals, characterized by their periodic structures, have been extensively studied for their ability to manipulate light. Typically, the development of 2D photonic crystals requires either sophisticated equipment or precise orientation of spherical nanoparticles. However, liquid-crystalline (LC) materials offer a promising alternative, facilitating the formation of periodic structures without the need for complex manipulation. Despite this advantage, the development of 2D photonic periodic structures using LC materials is limited to a few colloidal nanodisk liquid crystals. Herein, 2D photonic colloidal liquid crystals composed of biomineral-based nanorods and water is reported. The soft photonic materials with 2D structure by self-assembled LC colloidal nanorods are unique and a new class of photonic materials different from conventional solid 2D photonic materials. These colloids exhibit bright structural colors with high reflectance (>50%) and significant angular dependency. The structural colors are adjusted by controlling the concentration and size of the LC colloidal nanorods. Furthermore, mechanochromic hydrogel thin films with 2D photonic structure are developed. The hydrogels exhibit reversible mechanochromic properties with angular dependency, which can be used for an advanced stimuli responsible sensor.
Collapse
Affiliation(s)
- Riki Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takahiro Mikami
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
| |
Collapse
|
2
|
Mouri E, Fukumoto T, Kato R, Miyamoto N, Nakato T. Time evolution of the inner structure of antimony phosphate nanosheet suspension developing structural colouration. SOFT MATTER 2024; 20:6353-6360. [PMID: 39075969 DOI: 10.1039/d4sm00647j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Structural colouration observed in antimony phosphate nanosheet suspensions has been known for two decades, but the stability of their inner structures has not been a topic in colloidal nanosheet systems. In this study, we investigate the time evolution of structures in suspension using UV-visible spectrometry and small-angle X-ray scattering. Here, we report that antimony phosphate nanosheet systems re-organise their inner structures, especially at lower concentrations (isotropic or biphasic region), and that the basal spacing decreases with time after sample preparation, although the evolution speed depends on the sample concentration. The stability of the inner structure of the suspension is essential for their application as structural colour materials in sensors and colourants.
Collapse
Affiliation(s)
- Emiko Mouri
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan.
- Strategic Research Unit for Innovative Multiscale Materials, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
| | - Takashi Fukumoto
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan.
| | - Riki Kato
- Graduate School of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Nobuyoshi Miyamoto
- Graduate School of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Teruyuki Nakato
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan.
- Strategic Research Unit for Innovative Multiscale Materials, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
| |
Collapse
|
3
|
Ogawa D, Nishimura T, Nishina Y, Sano K. A magnetically responsive photonic crystal of graphene oxide nanosheets. NANOSCALE 2024; 16:7908-7915. [PMID: 38441113 DOI: 10.1039/d3nr06114k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Magnetically responsive photonic crystals of colloidal nanosheets hold great promise for various applications. Here, we systematically investigated the magnetically responsive behavior of a photonic crystal consisting of graphene oxide (GO) nanosheets and water. After applying a 12 T magnetic field perpendicular and parallel to the observation direction, the photonic crystal exhibited a more vivid structural color and no structural color, respectively, based on the magnetic orientation of GO nanosheets. The reflection wavelength can be modulated by varying the GO concentration, and the peak intensity can be basically enhanced by increasing both the time and strength of the magnetic application. To improve color quality, we developed a novel approach of alternately applying a magnetic field to two orthogonal directions, instead of using a rotating magnetic field. Finally, we achieved color switching by changing the direction of applied magnetic fields.
Collapse
Affiliation(s)
- Daisuke Ogawa
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.
| | - Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Koki Sano
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.
| |
Collapse
|
4
|
Xu YT, Ackroyd AJ, Momeni A, Oudah M, MacLachlan MJ. Magnetic field-responsive graphene oxide photonic liquids. NANOSCALE HORIZONS 2024; 9:317-323. [PMID: 38196394 DOI: 10.1039/d3nh00412k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Modifying the environment around particles (e.g., introducing a secondary phase or external field) can affect the way they interact and assemble, thereby giving control over the physical properties of a dynamic system. Here, graphene oxide (GO) photonic liquids that respond to a magnetic field are demonstrated for the first time. Magnetic nanoparticles are used to provide a continuous magnetizable liquid environment around the GO liquid crystalline domains. In response to a magnetic field, the alignment of magnetic nanoparticles, coupled with the diamagnetic property of GO nanosheets, drives the reorientation and alignment of the nanosheets, enabling switchable photonic properties using a permanent magnet. This phenomenon is anticipated to be extendable to other relevant photonic systems of shape-anisotropic nanoparticles and may open up opportunities for developing GO-based optical materials and devices.
Collapse
Affiliation(s)
- Yi-Tao Xu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Amanda J Ackroyd
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Arash Momeni
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Mohamed Oudah
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Mark J MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z1, Canada
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
5
|
Cherni L, El Rifaii K, Wensink HH, Chevrier SM, Goldmann C, Michot LJ, Davidson P, Gabriel JCP. Crystalline restacking of 2D-materials from their nanosheets suspensions. NANOSCALE 2023; 15:18359-18367. [PMID: 37930119 DOI: 10.1039/d3nr04885c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
We report here the highly ordered restacking of the layered phosphatoantimonic dielectric materials H3(1-x)M3xSb3P2O14, (where M = Li, Na, K, Rb, Cs and 0 ≤ x ≤ 1), from their nanosheets dispersed in colloidal suspension, induced by a simple pH change using alkaline bases. H3Sb3P2O14 aqueous suspensions are some of the rare examples of colloidal suspensions based on 2D materials exhibiting a lamellar liquid crystalline phase. Because the lamellar period can reach several hundred nanometers, the suspensions show vivid structural colors and because these colors are sensitive to various chemicals, the suspensions can be used as sensors. The structures of the lamellar liquid crystalline phase and the restacked phase have been studied by X-ray scattering (small and wide angle), which has followed the dependence of the lamellar/restacked phase equilibrium on the cation exchange rate, x. The X-ray diffraction pattern of the restacked phase is almost identical to that of the M3Sb3P2O14 crystalline phase, showing that the restacking is highly accurate and avoids the turbostratic disorder of the nanosheets classically observed in nanosheet stacking of other 2D materials. Strikingly, the restacking process exhibits features highly reminiscent of a first-order phase transition, with the existence of a phase coexistence region where both ∼1 nm (interlayer spacing of the restacked phase) and ∼120 nm lamellar periods can be observed simultaneously. Furthermore, this first-order phase transition is well described theoretically by incorporating a Lennard-Jones-type lamellar interaction potential into an entropy-based statistical physics model of the lamellar phase of nanosheets. Our work shows that the precise cation exchange produced at room temperature by a classical neutralization reaction using alkaline bases leads to a crystal-like restacking of the exfoliated free Sb3P2O143- nanosheets from suspension, avoiding the turbostratic disorder typical of van der Waals 2D materials, which is detrimental to the controlled deposition of nanosheets into complex integrated electronic, spintronic, photonic or quantum structures.
Collapse
Affiliation(s)
- Lina Cherni
- Université Paris-Saclay, CEA, CNRS, NIMBE-LICSEN, 91191 Gif-sur-Yvette, France.
| | - Karin El Rifaii
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France.
| | - Henricus H Wensink
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France.
| | - Sarah M Chevrier
- Université Paris-Saclay, CEA, CNRS, NIMBE-LICSEN, 91191 Gif-sur-Yvette, France.
| | - Claire Goldmann
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France.
| | - Laurent J Michot
- Laboratory of Physical Chemistry of Electrolytes and Interfacial Nanosystems (PHENIX), Sorbonne Université, CNRS, 75005 Paris, France
| | - Patrick Davidson
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France.
| | | |
Collapse
|
6
|
Wang Y, Kan X, Liu Y, Ju J, Yao X. Nacre-inspired layered composite gels with broad tunable mechanical strength and structural color for stress visualization. NANOSCALE 2023; 15:9060-9068. [PMID: 37158095 DOI: 10.1039/d3nr01362f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The brick-and-mortar architecture of nacre shells brings radiant structural colors, high toughness, and strength, inspiring numerous designs for structural and optical materials. However, constructing structural color is not always easy, especially among soft materials where aligning components against random and dynamically active environments is generally difficult. Here, we propose a composite organohydrogel capable of visualizing multiple levels of stress, featuring broad tunable mechanical properties, dynamic mechanochromism, deep low working temperatures, and anti-drying attributes. In the composite gels, the intercalation between α-zirconium phosphate (α-ZrP) nanoplates and poly-(diacetone acrylamide-co-acrylamide) is induced by shear-orientation-assisted self-assembly followed by solvent replacement. The highly tailorable (from ∼780 nm to ∼445 nm) range of colors was achieved by regulating the concentration of α-ZrP and glycerol inside the matrix. With the help from glycerol, the composite gels exhibited long-term stability (7 d) in the arid condition and remarkable low-temperature tolerance (-80 °C). The extraordinary mechanical property (compressive strength up to 119 MPa) of composite gels is achieved by the assembled α-ZrP plates with a small aspect ratio, high negative charge repulsion, and abundant hydrogen bonding sites. As a result, the mechanochromic sensor based on the composite gel enjoys a wide range of stress detection (0-1862 KPa). This study provides a new strategy for constructing high strength structural-colored gels, opening up opportunities for sensitive yet strong mechanochromic sensors in extreme environments.
Collapse
Affiliation(s)
- Yunpeng Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials and Engineering, Henan University, Kaifeng 475000, China.
| | - Xinyu Kan
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials and Engineering, Henan University, Kaifeng 475000, China.
| | - Yaru Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials and Engineering, Henan University, Kaifeng 475000, China.
| | - Jie Ju
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials and Engineering, Henan University, Kaifeng 475000, China.
| | - Xi Yao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials and Engineering, Henan University, Kaifeng 475000, China.
| |
Collapse
|
7
|
El Rifaii K, Wensink HH, Dozov I, Bizien T, Michot LJ, Gabriel JCP, Breu J, Davidson P. Do Aqueous Suspensions of Smectite Clays Form a Smectic Liquid-Crystalline Phase? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14563-14573. [PMID: 36395196 DOI: 10.1021/acs.langmuir.2c01821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bottom-up strategies for the production of well-defined nanostructures often rely on the self-assembly of anisotropic colloidal particles (nanowires and nanosheets). These building blocks can be obtained by delamination in a solvent of low-dimensionality crystallites. To optimize particle availability, determination of the delamination mechanism and the different organization stages of anisotropic particles in dispersion is essential. We address this fundamental issue by exploiting a recently developed system of fluorohectorite smectite clay mineral that delaminates in water, leading to colloidal dispersions of single-layer, very large (≈20 μm) clay sheets at high dilution. We show that when the clay crystallites are dispersed in water, they swell to form periodic one-dimensional stacks of fluorohectorite sheets with very low volume fraction (<1%) and therefore huge (≈100 nm) periods. Using optical microscopy and synchrotron X-ray scattering, we establish that these colloidal stacks bear strong similarities, yet subtle differences, with a smectic liquid-crystalline phase. Despite the high dilution, the colloidal stacks of sheets, called colloidal accordions, are extremely robust mechanically and can persist for years. Moreover, when subjected to AC electric fields, they rotate as solid bodies, which demonstrates their outstanding internal cohesion. Furthermore, our theoretical model captures the dependence of the stacking period on the dispersion concentration and ionic strength and explains, invoking the Donnan effect, why the colloidal accordions are kinetically stable over years and impervious to shear and Brownian motion. Because our model is not system specific, we expect that similar colloidal accordions frequently appear as an intermediate state during the delamination process of two-dimensional crystals in polar solvents.
Collapse
Affiliation(s)
- Karin El Rifaii
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405Orsay, France
| | - Henricus H Wensink
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405Orsay, France
| | - Ivan Dozov
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405Orsay, France
| | - Thomas Bizien
- SWING Beamline, SOLEIL Synchrotron, 91192Gif-sur-Yvette, France
| | - Laurent J Michot
- Laboratory of Physical Chemistry of Electrolytes and Interfacial Nanosystems (PHENIX), Sorbonne Université, CNRS, 75005Paris, France
| | | | - Josef Breu
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440Bayreuth, Germany
| | - Patrick Davidson
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405Orsay, France
| |
Collapse
|