1
|
Janas A, Jordan J, Bertalan G, Meyer T, Bukatz J, Sack I, Senger C, Nieminen-Kelhä M, Brandenburg S, Kremenskaia I, Krantchev K, Al-Rubaiey S, Mueller S, Koch SP, Boehm-Sturm P, Reiter R, Zips D, Vajkoczy P, Acker G. In vivo characterization of brain tumor biomechanics: magnetic resonance elastography in intracranial B16 melanoma and GL261 glioma mouse models. Front Oncol 2024; 14:1402578. [PMID: 39324003 PMCID: PMC11422132 DOI: 10.3389/fonc.2024.1402578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/05/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Magnetic Resonance Elastography (MRE) allows the non-invasive quantification of tumor biomechanical properties in vivo. With increasing incidence of brain metastases, there is a notable absence of appropriate preclinical models to investigate their biomechanical characteristics. Therefore, the purpose of this work was to assess the biomechanical characteristics of B16 melanoma brain metastases (MBM) and compare it to murine GL261 glioblastoma (GBM) model using multifrequency MRE with tomoelastography post processing. Methods Intracranial B16 MBM (n = 6) and GL261 GBM (n = 7) mouse models were used. Magnetic Resonance Imaging (MRI) was performed at set intervals after tumor implantation: 5, 7, 12, 14 days for MBM and 13 and 22 days for GBM. The investigations were performed using a 7T preclinical MRI with 20 mm head coil. The protocol consisted of single-shot spin echo-planar multifrequency MRE with tomoelastography post processing, contrast-enhanced T1- and T2-weighted imaging and diffusion-weighted imaging (DWI) with quantification of apparent diffusion coefficient of water (ADC). Elastography quantified shear wave speed (SWS), magnitude of complex MR signal (T2/T2*) and loss angle (φ). Immunohistological investigations were performed to assess vascularization, blood-brain-barrier integrity and extent of glucosaminoglucan coverage. Results Volumetric analyses displayed rapid growth of both tumor entities and softer tissue properties than healthy brain (healthy: 5.17 ± 0.48, MBM: 3.83 ± 0.55, GBM: 3.7 ± 0.23, [m/s]). SWS of MBM remained unchanged throughout tumor progression with decreased T2/T2* intensity and increased ADC on days 12 and 14 (p<0.0001 for both). Conversely, GBM presented reduced φ values on day 22 (p=0.0237), with no significant alterations in ADC. Histological analysis revealed substantial vascularization and elevated glycosaminoglycan content in both tumor types compared to healthy contralateral brain. Discussion Our results indicate that while both, MBM and GBM, exhibited softer properties compared to healthy brain, imaging and histological analysis revealed different underlying microstructural causes: hemorrhages in MBM and increased vascularization and glycosaminoglycan content in GBM, further corroborated by DWI and T2/T2* contrast. These findings underscore the complementary nature of MRE and its potential to enhance our understanding of tumor characteristics when used alongside established techniques. This comprehensive approach could lead to improved clinical outcomes and a deeper understanding of brain tumor pathophysiology.
Collapse
Affiliation(s)
- Anastasia Janas
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jakob Jordan
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Gergely Bertalan
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Tom Meyer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jan Bukatz
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Carolin Senger
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Susan Brandenburg
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Irina Kremenskaia
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kiril Krantchev
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Sanaria Al-Rubaiey
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Susanne Mueller
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Charité 3R - Replace | Reduce | Refine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Stefan Paul Koch
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Charité 3R - Replace | Reduce | Refine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Charité 3R - Replace | Reduce | Refine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Rolf Reiter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Daniel Zips
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Gueliz Acker
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Bergs J, Morr AS, Silva RV, Infante‐Duarte C, Sack I. The Networking Brain: How Extracellular Matrix, Cellular Networks, and Vasculature Shape the In Vivo Mechanical Properties of the Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402338. [PMID: 38874205 PMCID: PMC11336943 DOI: 10.1002/advs.202402338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Mechanically, the brain is characterized by both solid and fluid properties. The resulting unique material behavior fosters proliferation, differentiation, and repair of cellular and vascular networks, and optimally protects them from damaging shear forces. Magnetic resonance elastography (MRE) is a noninvasive imaging technique that maps the mechanical properties of the brain in vivo. MRE studies have shown that abnormal processes such as neuronal degeneration, demyelination, inflammation, and vascular leakage lead to tissue softening. In contrast, neuronal proliferation, cellular network formation, and higher vascular pressure result in brain stiffening. In addition, brain viscosity has been reported to change with normal blood perfusion variability and brain maturation as well as disease conditions such as tumor invasion. In this article, the contributions of the neuronal, glial, extracellular, and vascular networks are discussed to the coarse-grained parameters determined by MRE. This reductionist multi-network model of brain mechanics helps to explain many MRE observations in terms of microanatomical changes and suggests that cerebral viscoelasticity is a suitable imaging marker for brain disease.
Collapse
Affiliation(s)
- Judith Bergs
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Anna S. Morr
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Rafaela V. Silva
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Carmen Infante‐Duarte
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Ingolf Sack
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| |
Collapse
|
3
|
Dieper A, Scheidegger S, Füchslin RM, Veltsista PD, Stein U, Weyland M, Gerster D, Beck M, Bengtsson O, Zips D, Ghadjar P. Literature review: potential non-thermal molecular effects of external radiofrequency electromagnetic fields on cancer. Int J Hyperthermia 2024; 41:2379992. [PMID: 39019469 DOI: 10.1080/02656736.2024.2379992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
INTRODUCTION There is an ongoing scientific discussion, that anti-cancer effects induced by radiofrequency (RF)-hyperthermia might not be solely attributable to subsequent temperature elevations at the tumor site but also to non-temperature-induced effects. The exact molecular mechanisms behind said potential non-thermal RF effects remain largely elusive, however, limiting their therapeutical targetability. OBJECTIVE Therefore, we aim to provide an overview of the current literature on potential non-temperature-induced molecular effects within cancer cells in response to RF-electromagnetic fields (RF-EMF). MATERIAL AND METHODS This literature review was conducted following the PRISMA guidelines. For this purpose, a MeSH-term-defined literature search on MEDLINE (PubMed) and Scopus (Elsevier) was conducted on March 23rd, 2024. Essential criteria herein included the continuous wave RF-EMF nature (3 kHz - 300 GHz) of the source, the securing of temperature-controlled circumstances within the trials, and the preclinical nature of the trials. RESULTS Analysis of the data processed in this review suggests that RF-EMF radiation of various frequencies seems to be able to induce significant non-temperature-induced anti-cancer effects. These effects span from mitotic arrest and growth inhibition to cancer cell death in the form of autophagy and apoptosis and appear to be mostly exclusive to cancer cells. Several cellular mechanisms were identified through which RF-EMF radiation potentially imposes its anti-cancer effects. Among those, by reviewing the included publications, we identified RF-EMF-induced ion channel activation, altered gene expression, altered membrane potentials, membrane oscillations, and blebbing, as well as changes in cytoskeletal structure and cell morphology. CONCLUSION The existent literature points toward a yet untapped therapeutic potential of RF-EMF treatment, which might aid in damaging cancer cells through bio-electrical and electro-mechanical molecular mechanisms while minimizing adverse effects on healthy tissue cells. Further research is imperative to definitively confirm non-thermal EMF effects as well as to determine optimal cancer-type-specific RF-EMF frequencies, field intensities, and exposure intervals.
Collapse
Affiliation(s)
- Anna Dieper
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan Scheidegger
- Institute for Applied Mathematics and Physics, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Rudolf M Füchslin
- Institute for Applied Mathematics and Physics, Zurich University of Applied Sciences, Winterthur, Switzerland
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Centrum (MDC), Berlin, Germany
| | - Paraskevi D Veltsista
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Centrum (MDC), Berlin, Germany
| | - Mathias Weyland
- Institute for Applied Mathematics and Physics, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Dominik Gerster
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Olof Bengtsson
- Ferdinand-Braun-Institut (FBH), Leibnitz-Institut für Höchstfrequenztechnik, Berlin, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Xie X, Sauer F, Grosser S, Lippoldt J, Warmt E, Das A, Bi D, Fuhs T, Käs JA. Effect of non-linear strain stiffening in eDAH and unjamming. SOFT MATTER 2024; 20:1996-2007. [PMID: 38323652 PMCID: PMC10900305 DOI: 10.1039/d3sm00630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
In cell clusters, the prominent factors at play encompass contractility-based enhanced tissue surface tension and cell unjamming transition. The former effect pertains to the boundary effect, while the latter constitutes a bulk effect. Both effects share outcomes of inducing significant elongation in cells. This elongation is so substantial that it surpasses the limits of linear elasticity, thereby giving rise to additional effects. To investigate these effects, we employ atomic force microscopy (AFM) to analyze how the mechanical properties of individual cells change under such considerable elongation. Our selection of cell lines includes MCF-10A, chosen for its pronounced demonstration of the extended differential adhesion hypothesis (eDAH), and MDA-MB-436, selected due to its manifestation of cell unjamming behavior. In the AFM analyses, we observe a common trend in both cases: as elongation increases, both cell lines exhibit strain stiffening. Notably, this effect is more prominent in MCF-10A compared to MDA-MB-436. Subsequently, we employ AFM on a dynamic range of 1-200 Hz to probe the mechanical characteristics of cell spheroids, focusing on both surface and bulk mechanics. Our findings align with the results from single cell investigations. Specifically, MCF-10A cells, characterized by strong contractile tissue tension, exhibit the greatest stiffness on their surface. Conversely, MDA-MB-436 cells, which experience significant elongation, showcase their highest stiffness within the bulk region. Consequently, the concept of single cell strain stiffening emerges as a crucial element in understanding the mechanics of multicellular spheroids (MCSs), even in the case of MDA-MB-436 cells, which are comparatively softer in nature.
Collapse
Affiliation(s)
- Xiaofan Xie
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| | - Frank Sauer
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| | - Steffen Grosser
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| | - Jürgen Lippoldt
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| | - Enrico Warmt
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| | - Amit Das
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Thomas Fuhs
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| | - Josef A Käs
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| |
Collapse
|
5
|
Rutili de Lima C, Khan SG, Shah SH, Ferri L. Mask region-based CNNs for cervical cancer progression diagnosis on pap smear examinations. Heliyon 2023; 9:e21388. [PMID: 37964829 PMCID: PMC10641213 DOI: 10.1016/j.heliyon.2023.e21388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Abstract
This research presents a novel approach for cervical cancer detection and segmentation using tissue images with multiple cells. The study employs a novel deep learning architecture based on Mask Region-Based Convolutional Neural Network (RCNN) and statistical analysis. This new architecture enables us to achieve a high percentage of detection and pix-to-pix area segmentation. A mean Average Precision (mAP) higher than 60% for 3-class and 5-class was achieved. In addition, higher F1-scores of 70% for 3-class and 5-class were obtained. This investigation is a collaborative work, where a medical consultant collected the samples from the Papanicolaou (Pap) Smear examination and labeled the cells presented to the liquid-based cytology (LBC). Furthermore, the online available benchmark data set, SIPaKMeD, was also utilized. Additionally, sample images from the Mendeley data set were also labeled by the trained medical consultant for comparison. The proposed scheme automatically generates a full report for a medical consultant to identify the location of the malicious cells in the given images and expedite the diagnosis and treatment process.
Collapse
Affiliation(s)
| | - Said G. Khan
- Department of Mechanical Engineering, College of Engineering, University of Bahrain Isa Town, Bahrain
| | - Syed H. Shah
- College of Electrical and Communication Engineering, Yuan Ze University, Taoyuan, Taiwan
| | | |
Collapse
|
6
|
Kumarapuram S, Yu R, Manchiraju P, Attard C, Escamilla J, Navin A, Khuroo M, Elmogazy O, Gupta G, Sun H, Roychowdhury S. Applying Shear Wave and Magnetic Resonance Elastography to Grade Brain Tumors: Systematic Review and Meta-Analysis. World Neurosurg 2023; 178:e147-e155. [PMID: 37442538 DOI: 10.1016/j.wneu.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Reports find that magnetic resonance elastography (MRE) and shear wave elastography (SWE) can classify intracranial tumors according to stiffness. However, systematic syntheses of these articles are lacking. In this report, a systematic review and meta-analysis was performed to evaluate whether SWE and MRE can predict meningioma and glioma grades. METHODS PubMed and Scopus were searched between February 10, 2022. and March 2, 2022. using manual search criteria. Eight out of 106 non-duplicate records were included, encompassing 84 patients with low-grade tumors (age 42 ± 13 years, 71% female) and 92 patients with high-grade tumors (age 50 ± 13 years, 42% female). Standardized mean difference in stiffness between high-grade and low-grade tumors were measured using a forest plot. The I2, χ2, and t tests were performed, and bubble plots were constructed to measure heterogeneity. An adapted QUADAS-2 scale evaluated study quality. Additionally, a funnel plot was constructed, and an Egger's intercept test determined study bias. RESULTS Low-grade tumors were stiffer than high-grade tumors (Cohen's D = -1.25; 95% CI -1.88, -0.62). Moderate heterogeneity was observed (I2 = 67%; P = 0.006) but controlling for publication year (I2 = 0.2%) and age (I2 = 0.0%-17%) reduced heterogeneity. Included studies revealed unclear or high bias for the reference standard and flow and timing (>50%). CONCLUSIONS Elastography techniques have potential to grade tumors intraoperatively and postoperatively. More studies are needed to evaluate the clinical utility of these technologies.
Collapse
Affiliation(s)
- Siddhant Kumarapuram
- Department of Radiology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.
| | - Richard Yu
- Department of Radiology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Pranav Manchiraju
- Department of Radiology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Casey Attard
- Department of Radiology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Jennifer Escamilla
- Department of Radiology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Apurva Navin
- Department of Radiology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Mohammad Khuroo
- Department of Radiology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Omar Elmogazy
- Department of Radiology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Gaurav Gupta
- Department of Radiology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Hai Sun
- Department of Radiology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Sudipta Roychowdhury
- Department of Radiology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
7
|
Sauer F, Grosser S, Shahryari M, Hayn A, Guo J, Braun J, Briest S, Wolf B, Aktas B, Horn L, Sack I, Käs JA. Changes in Tissue Fluidity Predict Tumor Aggressiveness In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303523. [PMID: 37553780 PMCID: PMC10502644 DOI: 10.1002/advs.202303523] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Indexed: 08/10/2023]
Abstract
Cancer progression is caused by genetic changes and associated with various alterations in cell properties, which also affect a tumor's mechanical state. While an increased stiffness has been well known for long for solid tumors, it has limited prognostic power. It is hypothesized that cancer progression is accompanied by tissue fluidization, where portions of the tissue can change position across different length scales. Supported by tabletop magnetic resonance elastography (MRE) on stroma mimicking collagen gels and microscopic analysis of live cells inside patient derived tumor explants, an overview is provided of how cancer associated mechanisms, including cellular unjamming, proliferation, microenvironment composition, and remodeling can alter a tissue's fluidity and stiffness. In vivo, state-of-the-art multifrequency MRE can distinguish tumors from their surrounding host tissue by their rheological fingerprints. Most importantly, a meta-analysis on the currently available clinical studies is conducted and universal trends are identified. The results and conclusions are condensed into a gedankenexperiment about how a tumor can grow and eventually metastasize into its environment from a physics perspective to deduce corresponding mechanical properties. Based on stiffness, fluidity, spatial heterogeneity, and texture of the tumor front a roadmap for a prognosis of a tumor's aggressiveness and metastatic potential is presented.
Collapse
Affiliation(s)
- Frank Sauer
- Soft Matter Physics DivisionPeter‐Debye‐Institute for Soft Matter Physics04103LeipzigGermany
| | - Steffen Grosser
- Soft Matter Physics DivisionPeter‐Debye‐Institute for Soft Matter Physics04103LeipzigGermany
- Institute for Bioengineering of CataloniaThe Barcelona Institute for Science and Technology (BIST)Barcelona08028Spain
| | - Mehrgan Shahryari
- Department of RadiologyCharité‐Universitätsmedizin10117BerlinGermany
| | - Alexander Hayn
- Department of HepatologyLeipzig University Hospital04103LeipzigGermany
| | - Jing Guo
- Department of RadiologyCharité‐Universitätsmedizin10117BerlinGermany
| | - Jürgen Braun
- Institute of Medical InformaticsCharité‐Universitätsmedizin10117BerlinGermany
| | - Susanne Briest
- Department of GynecologyLeipzig University Hospital04103LeipzigGermany
| | - Benjamin Wolf
- Department of GynecologyLeipzig University Hospital04103LeipzigGermany
| | - Bahriye Aktas
- Department of GynecologyLeipzig University Hospital04103LeipzigGermany
| | - Lars‐Christian Horn
- Division of Breast, Urogenital and Perinatal PathologyLeipzig University Hospital04103LeipzigGermany
| | - Ingolf Sack
- Department of RadiologyCharité‐Universitätsmedizin10117BerlinGermany
| | - Josef A. Käs
- Soft Matter Physics DivisionPeter‐Debye‐Institute for Soft Matter Physics04103LeipzigGermany
| |
Collapse
|
8
|
Liu D, Chen J, Zhang Y, Dai Y, Yao X. Magnetic resonance elastography-derived stiffness: potential imaging biomarker for differentiation of benign and malignant pancreatic masses. Abdom Radiol (NY) 2023; 48:2604-2614. [PMID: 37237155 DOI: 10.1007/s00261-023-03956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE This study sought to determine the diagnostic performance of magnetic resonance elastography (MRE) for pancreatic solid masses, compared with diffusion-weighted imaging (DWI) and serum CA19-9, to establish a threshold for differentiating between pancreatic ductal adenocarcinoma (PDAC) and benign tumors in pancreas. MATERIALS AND METHODS Between July 2021 to January 2023, 75 adult patients confirmed with pancreatic solid tumors were enrolled in this prospective and consecutive study. All patients underwent MRE and DWI examinations that were both performed with a spin echo-EPI sequence. Stiffness maps and apparent diffusion coefficient (ADC) maps were generated, with MRE-derived mass stiffness and stiffness ratio (computing as the ratio of mass stiffness to the parenchyma stiffness) and DWI-derived ADC values obtained by placing regions of interest over the focal tumors on stiffness and ADC maps. Further analysis of comparing diagnostic performances was assessed by calculating the area under ROC curves. RESULTS PDAC had significantly higher tumor stiffness [3.795 (2.879-4.438) kPa vs. 2.359 (2.01-3.507) kPa, P = 0.0003], stiffness ratio [1.939 (1.562-2.511) vs. 1.187 (1.031-1.453), P < 0.0001] and serum CA19-9 level [276 (31.73-1055) vs. 10.45 (7.825-14.15), P < 0.0001] than other pancreatic masses. Mass stiffness, stiffness ratio and serum CA19-9 showed good diagnostic performance for differentiation with AUC of 0.7895, 0.8392 and 0.9136 respectively. The sensitivity/specificity/positive predictive value/negative predictive value for differentiating malignant from benign pancreatic tumors with mass stiffness (cutoff, > 2.8211 kPa) and stiffness ratio (cutoff, > 1.5117) were 78.4/66.7/82.9/60% and 77.8/83.3/90.3/65.2% respectively. The combined performance of Mass stiffness, stiffness ratio and serum CA19-9 got an AUC of 0.9758. CONCLUSION MRE holds excellent clinical potential in discriminating pancreatic ductal adenocarcinoma from other pancreatic solid masses according to their mechanical properties.
Collapse
Affiliation(s)
- Dingxia Liu
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
- Department of Radiology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Jiejun Chen
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
- Department of Radiology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Yunfei Zhang
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Yongming Dai
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Xiuzhong Yao
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China.
- Department of Radiology, Zhongshan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Abstract
ABSTRACT The mechanical traits of cancer include abnormally high solid stress as well as drastic and spatially heterogeneous changes in intrinsic mechanical tissue properties. Whereas solid stress elicits mechanosensory signals promoting tumor progression, mechanical heterogeneity is conducive to cell unjamming and metastatic spread. This reductionist view of tumorigenesis and malignant transformation provides a generalized framework for understanding the physical principles of tumor aggressiveness and harnessing them as novel in vivo imaging markers. Magnetic resonance elastography is an emerging imaging technology for depicting the viscoelastic properties of biological soft tissues and clinically characterizing tumors in terms of their biomechanical properties. This review article presents recent technical developments, basic results, and clinical applications of magnetic resonance elastography in patients with malignant tumors.
Collapse
Affiliation(s)
- Jing Guo
- From the Department of Radiology
| | | | | | | |
Collapse
|
10
|
Morr AS, Nowicki M, Bertalan G, Vieira Silva R, Infante Duarte C, Koch SP, Boehm-Sturm P, Krügel U, Braun J, Steiner B, Käs JA, Fuhs T, Sack I. Mechanical properties of murine hippocampal subregions investigated by atomic force microscopy and in vivo magnetic resonance elastography. Sci Rep 2022; 12:16723. [PMID: 36202964 PMCID: PMC9537158 DOI: 10.1038/s41598-022-21105-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
The hippocampus is a very heterogeneous brain structure with different mechanical properties reflecting its functional variety. In particular, adult neurogenesis in rodent hippocampus has been associated with specific viscoelastic properties in vivo and ex vivo. Here, we study the microscopic mechanical properties of hippocampal subregions using ex vivo atomic force microscopy (AFM) in correlation with the expression of GFP in presence of the nestin promoter, providing a marker of neurogenic activity. We further use magnetic resonance elastography (MRE) to investigate whether in vivo mechanical properties reveal similar spatial patterns, however, on a much coarser scale. AFM showed that tissue stiffness increases with increasing distance from the subgranular zone (p = 0.0069), and that stiffness is 39% lower in GFP than non-GFP regions (p = 0.0004). Consistently, MRE showed that dentate gyrus is, on average, softer than Ammon´s horn (shear wave speed = 3.2 ± 0.2 m/s versus 4.4 ± 0.3 m/s, p = 0.01) with another 3.4% decrease towards the subgranular zone (p = 0.0001). The marked reduction in stiffness measured by AFM in areas of high neurogenic activity is consistent with softer MRE values, indicating the sensitivity of macroscopic mechanical properties in vivo to micromechanical structures as formed by the neurogenic niche of the hippocampus.
Collapse
Affiliation(s)
- Anna S Morr
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcin Nowicki
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Gergely Bertalan
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Rafaela Vieira Silva
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carmen Infante Duarte
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Paul Koch
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Barbara Steiner
- Clinic for Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Josef A Käs
- Section of Soft Matter Physics, Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Geosciences, University of Leipzig, Leipzig, Germany
| | - Thomas Fuhs
- Section of Soft Matter Physics, Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Geosciences, University of Leipzig, Leipzig, Germany
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|