1
|
Correa TS, Lima WG, do Couto Campos AB, Galdino AS, de Oliveira Lima EC, Cardoso VN, Fernandes SOA, Campos-da-Paz M. Biodistribution and Tumor Targeted Accumulation of Anti-CEA-loaded Iron Nanoparticles. Curr Pharm Biotechnol 2025; 26:108-119. [PMID: 38321899 DOI: 10.2174/0113892010268872240104114444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Abstract
INTRODUCTION Active targeting of tumors by nanomaterials favors early diagnosis and the reduction of harsh side effects of chemotherapeuticals. METHODS We synthesized magnetic nanoparticles (64 nm; -40 mV) suspended in a magnetic fluid (MF) and decorated them with anti-carcinoembryonic antigen (MFCEA; 144 nm; -39 mV). MF and MFCEA nanoparticles were successfully radiolabeled with technetium-99m (99mTc) and intravenously injected in CEA-positive 4T1 tumor-bearing mice to perform biodistribution studies. Both 99mTc-MF and 99mTc-MFCEA had marked uptake by the liver and spleen, and the renal uptake of 99mTc-MFCEA was higher than that observed for 99mTc-MF at 20h. At 1 and 5 hours, the urinary excretion was higher for 99mTc-MF than for 99mTc-MFCEA. RESULTS These data suggest that anti-CEA decoration might be responsible for a delay in renal clearance. Regarding the tumor, 99mTc-MFCEA showed tumor uptake nearly two times higher than that observed for 99mTc-MFCEA. Similarly, the target-nontarget ratio was higher with 99mTc-MFCEA when compared to the group that received the 99mTc-MF. CONCLUSION These data validated the ability of active tumor targeting by the as-developed anti- CEA loaded nanoparticles and are very promising results for the future development of a nanodevice for the management of breast cancer and other types of CEA-positive tumors.
Collapse
Affiliation(s)
- Thais Silva Correa
- Department of Biochemistry, Federal University of São João del Rei, Divinópolis, MG, 35500-291, Brazil
| | - William Gustavo Lima
- School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | - Mariana Campos-da-Paz
- Department of Biochemistry, Federal University of São João del Rei, Divinópolis, MG, 35500-291, Brazil
| |
Collapse
|
2
|
García-García G, Lázaro M, Urquiza P, Romacho T, Delgado ÁV, Iglesias GR. Polydopamine Coated Nonspherical Magnetic Nanocluster for Synergistic Dual Magneto-Photothermal Cancer Therapy. Polymers (Basel) 2024; 17:85. [PMID: 39795489 PMCID: PMC11723388 DOI: 10.3390/polym17010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Local hyperthermia is gaining considerable interest due to its promising antitumor effects. In this context, dual magneto-photothermal cancer therapy holds great promise. For this purpose, the use of nanomaterials has been proposed. Therefore, the aim of this research is to develop a dual magneto-photothermal agent consisting of polydopamine-coated nonspherical magnetic nanoclusters. The physicochemical characterization of the nanoclusters was performed by electron microscopy, electron dispersive X-ray, dynamic light scattering, electrophoretic mobility, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The biocompatibility of the nanoclusters was evaluated using human skin M1 fibroblasts. The potential of the nanoclusters as dual magneto-photothermal agents was investigated by applying an alternating magnetic field (18 kA/m and 165 kHz) and/or NIR laser (850 nm, 0.75 W/cm2). Nanoclusters showed a size of 350 nm consisting of nonspherical magnetic particles of 11 nm completely coated with polydopamine. In addition, they were superparamagnetic and did not significantly affect cell viability at concentrations below 200 µg/mL. Finally, the SAR values obtained for the nanoclusters demonstrated their suitability for magnetotherapy and phototherapy (71 and 41 W/g, respectively), with a synergistic effect when used together (176 W/g). Thus, this work has successfully developed polymeric-coated magnetic nanoclusters with the potential for dual magneto-photothermal cancer therapy.
Collapse
Affiliation(s)
- Gracia García-García
- Department of Nursing, Physiotherapy and Medicine, University of Almería, 04120 Almería, Spain;
- Chronic Complications Diabetes Lab (ChroCoDiL), University of Almería, 04120 Almería, Spain
- NanoMag Lab, Department of Applied Physics, Faculty of Science University of Granada, Planta-1, Edificio I+D Josefina Castro, Av. de Madrid, 28, 18012 Granada, Spain; (M.L.); (Á.V.D.)
| | - Marina Lázaro
- NanoMag Lab, Department of Applied Physics, Faculty of Science University of Granada, Planta-1, Edificio I+D Josefina Castro, Av. de Madrid, 28, 18012 Granada, Spain; (M.L.); (Á.V.D.)
- Department of Applied Physics, School of Sciences, University of Granada, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University of Granada, 18001 Granada, Spain
| | - Pedro Urquiza
- Biomedical Research Unit-Biotechnology Laboratory, Torrecárdenas University Hospital, C/Hermandad de Donantes de Sangre s/n, 04009 Almería, Spain;
| | - Tania Romacho
- Department of Nursing, Physiotherapy and Medicine, University of Almería, 04120 Almería, Spain;
- Chronic Complications Diabetes Lab (ChroCoDiL), University of Almería, 04120 Almería, Spain
| | - Ángel V. Delgado
- NanoMag Lab, Department of Applied Physics, Faculty of Science University of Granada, Planta-1, Edificio I+D Josefina Castro, Av. de Madrid, 28, 18012 Granada, Spain; (M.L.); (Á.V.D.)
- Department of Applied Physics, School of Sciences, University of Granada, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University of Granada, 18001 Granada, Spain
- MNat Unit of Excellence, University of Granada, 18001 Granada, Spain
| | - Guillermo R. Iglesias
- NanoMag Lab, Department of Applied Physics, Faculty of Science University of Granada, Planta-1, Edificio I+D Josefina Castro, Av. de Madrid, 28, 18012 Granada, Spain; (M.L.); (Á.V.D.)
- Department of Applied Physics, School of Sciences, University of Granada, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University of Granada, 18001 Granada, Spain
- MNat Unit of Excellence, University of Granada, 18001 Granada, Spain
| |
Collapse
|
3
|
Li Z, Wei Y, Wu H, Yuan P, Bu H, Tan X. Stable Magnetite@La-Fe Oxide Core-Shell Nanostructures Prepared via Lattice Lock for Reusable Extraction of Phosphate Anions. Inorg Chem 2024. [PMID: 39254305 DOI: 10.1021/acs.inorgchem.4c02487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Stable magnetic core-shell nanostructures are developed by lattice locking lanthanide-iron (La-Fe) oxide shells with magnetite cores to prevent the release of La from the surfaces of the magnetite nanostructures. The resulting core-shell nanostructures demonstrate excellent outstanding regeneration performance and high adsorption capacity for phosphate (115 mg P·g-1). These nanostructures release minimal La from the magnetite core surfaces after adsorbent regeneration, with a La loss of only 20% compared to the control sample, Mag@La(OH)3. La3+ ions were released at concentrations ranging from 1 to 2.3 μg·L-1 at pH levels of 4 to 8, which is within the metal content range found in natural aquatic environments. These results demonstrate the high stability of the nanostructures after regeneration. Furthermore, the adsorbent exhibits high extraction capacity across a wide pH range of 4 to 10 and performs well even in the presence of interfering anions at phosphate-to-anion molar ratios of 1:5, 1:25, and 1:100. Microscopic and spectroscopic analyses reveal that the primary extraction mechanism of phosphate in the La-containing shells is surface precipitation. This approach not only improves the use of magnetic core-shell nanostructures as adsorbents but also demonstrates the creation of a broad range of stable magnetic functional materials for diverse applications.
Collapse
Affiliation(s)
- Zheng Li
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Yanfu Wei
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Honghai Wu
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Peng Yuan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongling Bu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinjie Tan
- School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
4
|
Medina-Moreno A, El-Hammadi MM, Martínez-Soler GI, Ramos JG, García-García G, Arias JL. Magnetic and pH-responsive magnetite/chitosan (core/shell) nanoparticles for dual-targeted methotrexate delivery in cancer therapy. Drug Deliv Transl Res 2024:10.1007/s13346-024-01701-y. [PMID: 39237670 DOI: 10.1007/s13346-024-01701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Methotrexate successful therapy encounters various challenges in chemotherapy, such as poor oral bioavailability, low specificity, side effects and the development of drug resistances. In this study, it is proposed a dual-targeted nanocarrier comprising magnetite/chitosan nanoparticles for an efficient Methotrexate delivery. The formation of the particles was confirmed through morphological analysis using electron microscopy and elemental mappings via energy dispersive X-ray spectroscopy. These nanoparticles exhibited a size of ≈ 270 nm, a zeta potential of ≈ 24 mV, and magnetic responsiveness, as demonstrated by hysteresis cycle analysis and visual observations under a magnetic field. In addition, these particles displayed high stability, as evidenced by size and surface electric charge measurements, during storage at both 4 ºC and 25 ºC for at least 30 days. Electrophoretic properties were examined in relation to pH and ionic strength, confirming these core/shell nanostructure. The nanoparticles demonstrated a pH-responsive drug release as observed by a sustained Methotrexate release over the next 90 h under pH ≈ 7.4, while complete release occurred within 3 h under acidic conditions (pH ≈ 5.5). In the biocompatibility assessment, the magnetite/chitosan particles showed excellent hemocompatibility ex vivo and no cytotoxic effects on normal MCF-10 A and cancer MCF-7 cells. Furthermore, the Methotrexate-loaded nanoparticles significantly enhanced the antitumor activity reducing the half-maximal inhibitory concentration by ≈ 2.7-fold less compared to the free chemotherapeutic.
Collapse
Affiliation(s)
- Ana Medina-Moreno
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain
| | - Mazen M El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Sevilla, 41012, Spain
| | - Gema I Martínez-Soler
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain
| | - Javier G Ramos
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain
| | - Gracia García-García
- Department of Nursing Sciences, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, Almería, 04120, Spain
- Biomedical Research Unit, Torrecárdenas University Hospital, Almería, 04009, Spain
| | - José L Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain.
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18016, Spain.
- Biosanitary Research Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, Granada, 18012, Spain.
| |
Collapse
|
5
|
Caro C, Guzzi C, Moral-Sánchez I, Urbano-Gámez JD, Beltrán AM, García-Martín ML. Smart Design of ZnFe and ZnFe@Fe Nanoparticles for MRI-Tracked Magnetic Hyperthermia Therapy: Challenging Classical Theories of Nanoparticles Growth and Nanomagnetism. Adv Healthc Mater 2024; 13:e2304044. [PMID: 38303644 DOI: 10.1002/adhm.202304044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Iron Oxide Nanoparticles (IONPs) hold the potential to exert significant influence on fighting cancer through their theranostics capabilities as contrast agents (CAs) for magnetic resonance imaging (MRI) and as mediators for magnetic hyperthermia (MH). In addition, these capabilities can be improved by doping IONPs with other elements. In this work, the synthesis and characterization of single-core and alloy ZnFe novel magnetic nanoparticles (MNPs), with improved magnetic properties and more efficient magnetic-to-heat conversion, are reported. Remarkably, the results challenge classical nucleation and growth theories, which cannot fully predict the final size/shape of these nanoparticles and, consequently, their magnetic properties, implying the need for further studies to better understand the nanomagnetism phenomenon. On the other hand, leveraging the enhanced properties of these new NPs, successful tumor therapy by MH is achieved following their intravenous administration and tumor accumulation via the enhanced permeability and retention (EPR) effect. Notably, these results are obtained using a single low dose of MNPs and a single exposure to clinically suitable alternating magnetic fields (AMF). Therefore, as far as the authors are aware, for the first time, the successful application of intravenously administered MNPs for MRI-tracked MH tumor therapy in passively targeted tumor xenografts using clinically suitable conditions is demonstrated.
Collapse
Affiliation(s)
- Carlos Caro
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Universidad de Málaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - Cinzia Guzzi
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Universidad de Málaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - Irene Moral-Sánchez
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Universidad de Málaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - Jesús David Urbano-Gámez
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Universidad de Málaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - Ana M Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, Sevilla, 41011, Spain
| | - Maria Luisa García-Martín
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Universidad de Málaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| |
Collapse
|
6
|
Zhao M, Liu Y, Yin C. Gold nanorod-chitosan based nanocomposites for photothermal and chemoembolization therapy of breast cancer. Int J Biol Macromol 2024; 259:129197. [PMID: 38184048 DOI: 10.1016/j.ijbiomac.2023.129197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/06/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Gold nanorods (AuNR) have received significant attention in tumor thermo-chemotherapy. However, insufficient thermal availability limits the in vivo highly efficient applications of AuNR in photothermal therapy. In this study, we have fabricated N-isopropylacrylamide grafted O-carboxymethyl chitosan nanoparticles (NCMC NPs) with thermo-responsive properties for co-encapsulating AuNR and doxorubicin (DOX), forming AuNR@NCMC/DOX nanocomposites (NCs). As a result of the thermo- and photothermal-responsiveness, AuNR@NCMC/DOX NCs exhibited irreversible aggregation at high temperature and under near-infrared (NIR) irradiation with an increase of size to 3 μm. When AuNR@NCMC/DOX NCs reached tumor sites following intravenous administration, they were located in the tumor vessels under NIR irradiation due to an embolization effect. This response enhanced tumor targeting, on-demand release, and the thermal performance of AuNR@NCMC/DOX NCs. We have observed higher tumor accumulation of DOX and AuNR with subsequent stronger inhibition of tumor growth than that achieved without NIR irradiation. The development of AuNR-based NCs with multiple smart responsivenesses at tumors can provide a promising paradigm for solid tumor treatment via the cooperative effects of photothermal therapy and chemoembolization.
Collapse
Affiliation(s)
- Mengxin Zhao
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yifu Liu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
7
|
Meng YQ, Shi YN, Zhu YP, Liu YQ, Gu LW, Liu DD, Ma A, Xia F, Guo QY, Xu CC, Zhang JZ, Qiu C, Wang JG. Recent trends in preparation and biomedical applications of iron oxide nanoparticles. J Nanobiotechnology 2024; 22:24. [PMID: 38191388 PMCID: PMC10775472 DOI: 10.1186/s12951-023-02235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The iron oxide nanoparticles (IONPs), possessing both magnetic behavior and semiconductor property, have been extensively used in multifunctional biomedical fields due to their biocompatible, biodegradable and low toxicity, such as anticancer, antibacterial, cell labelling activities. Nevertheless, there are few IONPs in clinical use at present. Some IONPs approved for clinical use have been withdrawn due to insufficient understanding of its biomedical applications. Therefore, a systematic summary of IONPs' preparation and biomedical applications is crucial for the next step of entering clinical practice from experimental stage. This review summarized the existing research in the past decade on the biological interaction of IONPs with animal/cells models, and their clinical applications in human. This review aims to provide cutting-edge knowledge involved with IONPs' biological effects in vivo and in vitro, and improve their smarter design and application in biomedical research and clinic trials.
Collapse
Affiliation(s)
- Yu Qing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ya Nan Shi
- School of Pharmacy, Yantai University, No. 30, Qingquan Road, Laishan District, Yantai, Shandong, China
| | - Yong Ping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan Qing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Wei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dan Dan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ang Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
8
|
García-García G, Caro C, Fernández-Álvarez F, García-Martín ML, Arias JL. Multi-stimuli-responsive chitosan-functionalized magnetite/poly(ε-caprolactone) nanoparticles as theranostic platforms for combined tumor magnetic resonance imaging and chemotherapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 52:102695. [PMID: 37394106 DOI: 10.1016/j.nano.2023.102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/02/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Chitosan-functionalized magnetite/poly(ε-caprolactone) nanoparticles were formulated by interfacial polymer disposition plus coacervation, and loaded with gemcitabine. That (core/shell)/shell nanostructure was confirmed by electron microscopy, elemental analysis, electrophoretic, and Fourier transform infrared characterizations. A short-term stability study proved the protection against particle aggregation provided by the chitosan shell. Superparamagnetic properties of the nanoparticles were characterized in vitro, while the definition of the longitudinal and transverse relaxivities was an initial indication of their capacity as T2 contrast agents. Safety of the particles was demonstrated in vitro on HFF-1 human fibroblasts, and ex vivo on SCID mice. The nanoparticles demonstrated in vitro pH- and heat-responsive gemcitabine release capabilities. In vivo magnetic resonance imaging studies and Prussian blue visualization of iron deposits in tissue samples defined the improvement in nanoparticle targeting into the tumor when using a magnetic field. This tri-stimuli (magnetite/poly(ε-caprolactone))/chitosan nanostructure could find theranostic applications (biomedical imaging & chemotherapy) against tumors.
Collapse
Affiliation(s)
- Gracia García-García
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Carlos Caro
- Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Junta de Andalucía-Universidad de Málaga, C/ Severo Ochoa, 35, 29590 Málaga, Spain
| | - Fátima Fernández-Álvarez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - María Luisa García-Martín
- Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Junta de Andalucía-Universidad de Málaga, C/ Severo Ochoa, 35, 29590 Málaga, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Málaga, Spain
| | - José L Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Av. del Conocimiento, 18016 Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), University of Granada, Av. de Madrid, 15, 18012 Granada, Spain.
| |
Collapse
|
9
|
Gago L, Quiñonero F, Perazzoli G, Melguizo C, Prados J, Ortiz R, Cabeza L. Nanomedicine and Hyperthermia for the Treatment of Gastrointestinal Cancer: A Systematic Review. Pharmaceutics 2023; 15:1958. [PMID: 37514144 PMCID: PMC10386177 DOI: 10.3390/pharmaceutics15071958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The incidence of gastrointestinal cancers has increased in recent years. Current treatments present numerous challenges, including drug resistance, non-specificity, and severe side effects, needing the exploration of new therapeutic strategies. One promising avenue is the use of magnetic nanoparticles, which have gained considerable interest due to their ability to generate heat in tumor regions upon the application of an external alternating magnetic field, a process known as hyperthermia. This review conducted a systematic search of in vitro and in vivo studies published in the last decade that employ hyperthermia therapy mediated by magnetic nanoparticles for treating gastrointestinal cancers. After applying various inclusion and exclusion criteria (studies in the last 10 years where hyperthermia using alternative magnetic field is applied), a total of 40 articles were analyzed. The results revealed that iron oxide is the preferred material for magnetism generation in the nanoparticles, and colorectal cancer is the most studied gastrointestinal cancer. Interestingly, novel therapies employing nanoparticles loaded with chemotherapeutic drugs in combination with magnetic hyperthermia demonstrated an excellent antitumor effect. In conclusion, hyperthermia treatments mediated by magnetic nanoparticles appear to be an effective approach for the treatment of gastrointestinal cancers, offering advantages over traditional therapies.
Collapse
Affiliation(s)
- Lidia Gago
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| |
Collapse
|
10
|
PLGA-Based Micro/Nanoparticles: An Overview of Their Applications in Respiratory Diseases. Int J Mol Sci 2023; 24:ijms24054333. [PMID: 36901762 PMCID: PMC10002081 DOI: 10.3390/ijms24054333] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are critical areas of medical research, as millions of people are affected worldwide. In fact, more than 9 million deaths worldwide were associated with respiratory diseases in 2016, equivalent to 15% of global deaths, and the prevalence is increasing every year as the population ages. Due to inadequate treatment options, the treatments for many respiratory diseases are limited to relieving symptoms rather than curing the disease. Therefore, new therapeutic strategies for respiratory diseases are urgently needed. Poly (lactic-co-glycolic acid) micro/nanoparticles (PLGA M/NPs) have good biocompatibility, biodegradability and unique physical and chemical properties, making them one of the most popular and effective drug delivery polymers. In this review, we summarized the synthesis and modification methods of PLGA M/NPs and their applications in the treatment of respiratory diseases (asthma, COPD, cystic fibrosis (CF), etc.) and also discussed the research progress and current research status of PLGA M/NPs in respiratory diseases. It was concluded that PLGA M/NPs are the promising drug delivery vehicles for the treatment of respiratory diseases due to their advantages of low toxicity, high bioavailability, high drug loading capacity, plasticity and modifiability. And at the end, we presented an outlook on future research directions, aiming to provide some new ideas for future research directions and hopefully to promote their widespread application in clinical treatment.
Collapse
|
11
|
El-Hammadi MM, Arias JL. Recent Advances in the Surface Functionalization of PLGA-Based Nanomedicines. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:354. [PMID: 35159698 PMCID: PMC8840194 DOI: 10.3390/nano12030354] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
Therapeutics are habitually characterized by short plasma half-lives and little affinity for targeted cells. To overcome these challenges, nanoparticulate systems have entered into the disease arena. Poly(d,l-lactide-co-glycolide) (PLGA) is one of the most relevant biocompatible materials to construct drug nanocarriers. Understanding the physical chemistry of this copolymer and current knowledge of its biological fate will help in engineering efficient PLGA-based nanomedicines. Surface modification of the nanoparticle structure has been proposed as a required functionalization to optimize the performance in biological systems and to localize the PLGA colloid into the site of action. In this review, a background is provided on the properties and biodegradation of the copolymer. Methods to formulate PLGA nanoparticles, as well as their in vitro performance and in vivo fate, are briefly discussed. In addition, a special focus is placed on the analysis of current research in the use of surface modification strategies to engineer PLGA nanoparticles, i.e., PEGylation and the use of PEG alternatives, surfactants and lipids to improve in vitro and in vivo stability and to create hydrophilic shells or stealth protection for the nanoparticle. Finally, an update on the use of ligands to decorate the surface of PLGA nanomedicines is included in the review.
Collapse
Affiliation(s)
- Mazen M. El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - José L. Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, 18071 Granada, Spain
| |
Collapse
|
12
|
Zumaya ALV, Rimpelová S, Štějdířová M, Ulbrich P, Vilčáková J, Hassouna F. Antibody Conjugated PLGA Nanocarriers and Superparmagnetic Nanoparticles for Targeted Delivery of Oxaliplatin to Cells from Colorectal Carcinoma. Int J Mol Sci 2022; 23:ijms23031200. [PMID: 35163122 PMCID: PMC8835878 DOI: 10.3390/ijms23031200] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Anti-CD133 monoclonal antibody (Ab)-conjugated poly(lactide-co-glycolide) (PLGA) nanocarriers, for the targeted delivery of oxaliplatin (OXA) and superparamagnetic nanoparticles (IO-OA) to colorectal cancer cells (CaCo-2), were designed, synthesized, characterized, and evaluated in this study. The co-encapsulation of OXA and IO-OA was achieved in two types of polymeric carriers, namely, PLGA and poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) by double emulsion. PLGA_IO-OA_OXA and PEGylated PLGA_IO-OA_OXA nanoparticles displayed a comparable mean diameter of 207 ± 70 nm and 185 ± 119 nm, respectively. The concentration of the released OXA from the PEGylated PLGA_IO-OA_OXA increased very rapidly, reaching ~100% release after only 2 h, while the PLGA_IO-OA_OXA displayed a slower and sustained drug release. Therefore, for a controlled OXA release, non-PEGylated PLGA nanoparticles were more convenient. Interestingly, preservation of the superparamagnetic behavior of the IO-OA, without magnetic hysteresis all along the dissolution process, was observed. The non-PEGylated nanoparticles (PLGA_OXA, PLGA_IO-OA_OXA) were selected for the anti-CD133 Ab conjugation. The affinity of Ab-coated nanoparticles for CD133-positive cells was examined using fluorescence microscopy in CaCo-2 cells, which was followed by a viability assay.
Collapse
Affiliation(s)
- Alma Lucia Villela Zumaya
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (A.L.V.Z.); (M.Š.)
| | - Silvie Rimpelová
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (S.R.); (P.U.)
| | - Markéta Štějdířová
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (A.L.V.Z.); (M.Š.)
| | - Pavel Ulbrich
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (S.R.); (P.U.)
| | - Jarmila Vilčáková
- Faculty of Technology, Tomas Bata University, 760 01 Zlín, Czech Republic;
| | - Fatima Hassouna
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (A.L.V.Z.); (M.Š.)
- Correspondence: ; Tel.: +420-220-444-099
| |
Collapse
|
13
|
Fernández-Álvarez F, García-García G, Arias JL. A Tri-Stimuli Responsive (Maghemite/PLGA)/Chitosan Nanostructure with Promising Applications in Lung Cancer. Pharmaceutics 2021; 13:1232. [PMID: 34452193 PMCID: PMC8401782 DOI: 10.3390/pharmaceutics13081232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
A (core/shell)/shell nanostructure (production performance ≈ 50%, mean diameter ≈ 330 nm) was built using maghemite, PLGA, and chitosan. An extensive characterization proved the complete inclusion of the maghemite nuclei into the PLGA matrix (by nanoprecipitation solvent evaporation) and the disposition of the chitosan shell onto the nanocomposite (by coacervation). Short-term stability and the adequate magnetism of the nanocomposites were demonstrated by size and electrokinetic determinations, and by defining the first magnetization curve and the responsiveness of the colloid to a permanent magnet, respectively. Safety of the nanoparticles was postulated when considering the results from blood compatibility studies, and toxicity assays against human colonic CCD-18 fibroblasts and colon carcinoma T-84 cells. Cisplatin incorporation to the PLGA matrix generated appropriate loading values (≈15%), and a dual pH- and heat (hyperthermia)-responsive drug release behaviour (≈4.7-fold faster release at pH 5.0 and 45 °C compared to pH 7.4 and 37 °C). The half maximal inhibitory concentration of the cisplatin-loaded nanoparticles against human lung adenocarcinoma A-549 cells was ≈1.6-fold less than that of the free chemotherapeutic. Such a biocompatible and tri-stimuli responsive (maghemite/PLGA)/chitosan nanostructure may found a promising use for the effective treatment of lung cancer.
Collapse
Affiliation(s)
- Fátima Fernández-Álvarez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
| | - Gracia García-García
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain;
| | - José L. Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, 18071 Granada, Spain
| |
Collapse
|