1
|
Li J, Gao T, Liang Z, Zhang Y, Zhang H, Peng Q, Zhu X, Abd-El-Aziz A, Zhang X, Ma N, Ma L. Rubber-like Deep Eutectic Solvent-Assisted Poly( N-acryloylglycinamide) Hydrogel for Highly Sensitive Pressure Detecting. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8434-8444. [PMID: 39849903 DOI: 10.1021/acsami.4c22299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Deep eutectic solvent (DES)-based conductive hydrogels have attracted great interest in the building of flexible electronic devices that can be used to replace conventional temperature-intolerant hydrogels and expensive ionic liquid gels. However, current DES-based conductive hydrogels obtained have limited mechanical strength, high hysteresis, and poor microdeformation sensitivity of the assembled sensors. In this work, a rubber-like conductive hydrogel based on N-acryloylglycinamide (NAGA) and DES (acetylcholine chloride/acrylamide) has been synthesized by a one-step method. The prepared conductive PNAGA-DES hydrogel has exhibited excellent mechanical strength, stability, and resilience during the long-term loading-unloading cycles, endowed with service durability. Besides, the as-prepared PNAGA-DES also possesses high transparency, high conductivity, and favorable antienvironmental disturbance, which can enhance the designability and robustness of the PNAGA-DES-based devices. Based on the remarkable properties, the PNAGA-DES hydrogel can be used for wearable pressure-strain sensors with high sensitivity of tiny strain for transferring information (gauge factor (GF) = 8.18, 0.2-2% strain) and long-term stability. Furthermore, it can also sensitively detect the large strain of human motion, showing potential application in information interaction and wearable electronics.
Collapse
Affiliation(s)
- Jizheng Li
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
- National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
| | - Tianyuan Gao
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| | - Zihang Liang
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| | - Yihan Zhang
- National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
| | - Haibing Zhang
- National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
| | - Qihe Peng
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| | - Xu Zhu
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| | - Alaa Abd-El-Aziz
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| | - Xinyue Zhang
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| | - Ning Ma
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| | - Li Ma
- National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
| |
Collapse
|
2
|
Xiang T, Guo Q, Jia L, Yin T, Huang W, Zhang X, Zhou S. Multifunctional Hydrogels for the Healing of Diabetic Wounds. Adv Healthc Mater 2024; 13:e2301885. [PMID: 37702116 DOI: 10.1002/adhm.202301885] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/10/2023] [Indexed: 09/14/2023]
Abstract
The healing of diabetic wounds is hindered by various factors, including bacterial infection, macrophage dysfunction, excess proinflammatory cytokines, high levels of reactive oxygen species, and sustained hypoxia. These factors collectively impede cellular behaviors and the healing process. Consequently, this review presents intelligent hydrogels equipped with multifunctional capacities, which enable them to dynamically respond to the microenvironment and accelerate wound healing in various ways, including stimuli -responsiveness, injectable self-healing, shape -memory, and conductive and real-time monitoring properties. The relationship between the multiple functions and wound healing is also discussed. Based on the microenvironment of diabetic wounds, antibacterial, anti-inflammatory, immunomodulatory, antioxidant, and pro-angiogenic strategies are combined with multifunctional hydrogels. The application of multifunctional hydrogels in the repair of diabetic wounds is systematically discussed, aiming to provide guidelines for fabricating hydrogels for diabetic wound healing and exploring the role of intelligent hydrogels in the therapeutic processes.
Collapse
Affiliation(s)
- Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Qianru Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Lianghao Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tianyu Yin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Wei Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xinyu Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
3
|
Qiu YL, Li Y, Zhang GL, Hao H, Hou HM, Bi J. Quaternary-ammonium chitosan, a promising packaging material in the food industry. Carbohydr Polym 2024; 323:121384. [PMID: 37940243 DOI: 10.1016/j.carbpol.2023.121384] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/10/2023] [Indexed: 11/10/2023]
Abstract
Quaternary-ammonium chitosan (QAC) is a polysaccharide with good water solubility, bacteriostasis, and biocompatibility. QAC is obtained by methylating or grafting the quaternary-ammonium group of chitosan and is an important compound in the food industry. Various QAC-based complexes have been prepared using reversible intermolecular interactions, such as electrostatic interactions, hydrogen bonding, metal coordination, host-guest interactions, and covalent bonding interactions consisting of Schiff base bonding and dynamic chemical bond cross-linking. In the food industry, QAC is often used as a substrate in film or coating for food preservation and as a carrier for active substances to improve the encapsulation efficiency and storage stability of functional food ingredients. In this review, we have assimilated the latest information on QAC to facilitate further discussions and future research. Advancement in research on QAC would contribute toward technology acceleration and its increased contribution to the field of food technology.
Collapse
Affiliation(s)
- Yu-Long Qiu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Yixi Li
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Gong-Liang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Hongshun Hao
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Hong-Man Hou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China.
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China.
| |
Collapse
|
4
|
Yang Y, Yu Z, Lu X, Dai J, Zhou C, Yan J, Wang L, Wang Z, Zang J. Minimally invasive bioprinting for in situ liver regeneration. Bioact Mater 2023; 26:465-477. [PMID: 37035761 PMCID: PMC10073993 DOI: 10.1016/j.bioactmat.2023.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
In situ bioprinting is promising for developing scaffolds directly on defect models in operating rooms, which provides a new strategy for in situ tissue regeneration. However, due to the limitation of existing in situ biofabrication technologies including printing depth and suitable bioinks, bioprinting scaffolds in deep dermal or extremity injuries remains a grand challenge. Here, we present an in vivo scaffold fabrication approach by minimally invasive bioprinting electroactive hydrogel scaffolds to promote in situ tissue regeneration. The minimally invasive bioprinting system consists of a ferromagnetic soft catheter robot for extrusion, a digital laparoscope for in situ monitoring, and a Veress needle for establishing a pneumoperitoneum. After 3D reconstruction of the defects with computed tomography, electroactive hydrogel scaffolds are printed within partial liver resection of live rats, and in situ tissue regeneration is achieved by promoting the proliferation, migration, and differentiation of cells and maintaining liver function in vivo.
Collapse
Affiliation(s)
- Yueying Yang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zhengyang Yu
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xiaohuan Lu
- Research Center for Tissue Engineering and Regenerative Medicine, Department of Gastrointestinal Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Jiahao Dai
- Research Center for Tissue Engineering and Regenerative Medicine, Department of Gastrointestinal Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Cheng Zhou
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Jing Yan
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Department of Clinical Laboratory, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
- Corresponding author. Research Center for Tissue Engineering and Regenerative Medicine, Department of Clinical Laboratory, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Department of Gastrointestinal Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
- Corresponding author. Research Center for Tissue Engineering and Regenerative Medicine, Department of Gastrointestinal Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Jianfeng Zang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
- Corresponding author. School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
5
|
Lin YH, Liu EW, Lin YJ, Ng HY, Lee JJ, Hsu TT. The Synergistic Effect of Electrical Stimulation and Dermal Fibroblast Cells-Laden 3D Conductive Hydrogel for Full-Thickness Wound Healing. Int J Mol Sci 2023; 24:11698. [PMID: 37511457 PMCID: PMC10380226 DOI: 10.3390/ijms241411698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Clinically, most patients with poor wound healing suffer from generalized skin damage, usually accompanied by other complications, so developing therapeutic strategies for difficult wound healing has remained extremely challenging until now. Current studies have indicated that electrical stimulation (ES) to cutaneous lesions enhances skin regeneration by activating intracellular signaling cascades and secreting skin regeneration-related cytokine. In this study, we designed different concentrations of graphene in gelatin-methacrylate (GelMa) to form the conductive composite commonly used in wound healing because of its efficiency compared to other conductive thermo-elastic materials. The results demonstrated the successful addition of graphene to GelMa while retaining the original physicochemical properties of the GelMa bioink. In addition, the incorporation of graphene increased the interactions between these two biomaterials, leading to an increase in mechanical properties, improvement in the swelling ratio, and the regulation of degradation characteristics of the biocomposite scaffolds. Moreover, the scaffolds exhibited excellent electrical conductivity, increasing proliferation and wound healing-related growth factor secretion from human dermal fibroblasts. Overall, the HDF-laden 3D electroconductive GelMa/graphene-based hydrogels developed in this study are ideal biomaterials for skin regeneration applications in the future.
Collapse
Affiliation(s)
- Yen-Hong Lin
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 404332, Taiwan
| | - En-Wei Liu
- Department of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung City 404332, Taiwan
| | - Yun-Jhen Lin
- School of Medicine, China Medical University, Taichung City 406040, Taiwan
| | - Hooi Yee Ng
- Department of Family Medicine, China Medical University Hospital, Taichung City 404332, Taiwan
| | - Jian-Jr Lee
- Department of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung City 404332, Taiwan
- School of Medicine, China Medical University, Taichung City 406040, Taiwan
| | - Tuan-Ti Hsu
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 404332, Taiwan
| |
Collapse
|
6
|
Du P, Wang J, Hsu YI, Uyama H. Bio-Inspired Homogeneous Conductive Hydrogel with Flexibility and Adhesiveness for Information Transmission and Sign Language Recognition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23711-23724. [PMID: 37145870 DOI: 10.1021/acsami.3c02105] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The wearable electronic technique is increasingly becoming an effective approach to overcoming the communication obstacles between signers and non-signers. However, the efficacy of conducting hydrogels currently proposed as flexible sensor devices is hindered by their poor processability and matrix mismatch, which frequently results in adhesion failure at the combined interfaces and deterioration of mechanical and electrochemical performance. Herein, we propose a hydrogel composed of a rigid matrix in which the hydrophobic and aggregated polyaniline was homogeneously embedded, while quaternate-functionalized nucleobase moieties endowed the flexible network with adhesiveness. Accordingly, the resulting hydrogel with chitosan-graft-polyaniline (chi-g-PANI) copolymers exhibited a promising conductivity (4.8 S·m-1) because of the uniformly dispersed polyaniline components and a high strain strength (0.84 MPa) because of the chain entanglement of chitosan after soaking. In addition, the modified adenine molecules not only realized synchronization in improving the stretchability (up to 1303%) and exhibiting a skin-like elastic modulus (≈184 kPa), but also provided a durable interfacial contact with various materials. The hydrogel was further fabricated into a strain-monitoring sensor for information encryption and sign language transmission based on its sensing stability and strain sensitivity of up to 2.77. The developed wearable sign language interpreting system provides an innovative strategy to assist auditory or speech-impaired people in communicating with non-signers using visual-gestural patterns including body movements and facial expressions.
Collapse
Affiliation(s)
- Peng Du
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Juan Wang
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Jia B, Li G, Cao E, Luo J, Zhao X, Huang H. Recent progress of antibacterial hydrogels in wound dressings. Mater Today Bio 2023; 19:100582. [PMID: 36896416 PMCID: PMC9988584 DOI: 10.1016/j.mtbio.2023.100582] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Hydrogels are essential biomaterials due to their favorable biocompatibility, mechanical properties similar to human soft tissue extracellular matrix, and tissue repair properties. In skin wound repair, hydrogels with antibacterial functions are especially suitable for dressing applications, so novel antibacterial hydrogel wound dressings have attracted widespread attention, including the design of components, optimization of preparation methods, strategies to reduce bacterial resistance, etc. In this review, we discuss the fabrication of antibacterial hydrogel wound dressings and the challenges associated with the crosslinking methods and chemistry of the materials. We have investigated the advantages and limitations (antibacterial effects and antibacterial mechanisms) of different antibacterial components in the hydrogels to achieve good antibacterial properties, and the response of hydrogels to stimuli such as light, sound, and electricity to reduce bacterial resistance. Conclusively, we provide a systematic summary of antibacterial hydrogel wound dressings findings (crosslinking methods, antibacterial components, antibacterial methods) and an outlook on long-lasting antibacterial effects, a broader antibacterial spectrum, diversified hydrogel forms, and the future development prospects of the field.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Guowei Li
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Ertai Cao
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518063, China
| |
Collapse
|
8
|
Liang Y, Qiao L, Qiao B, Guo B. Conductive hydrogels for tissue repair. Chem Sci 2023; 14:3091-3116. [PMID: 36970088 PMCID: PMC10034154 DOI: 10.1039/d3sc00145h] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
Conductive hydrogels (CHs) combine the biomimetic properties of hydrogels with the physiological and electrochemical properties of conductive materials, and have attracted extensive attention in the past few years. In addition, CHs have high conductivity and electrochemical redox properties and can be used to detect electrical signals generated in biological systems and conduct electrical stimulation to regulate the activities and functions of cells including cell migration, cell proliferation, and cell differentiation. These properties give CHs unique advantages in tissue repair. However, the current review of CHs is mostly focused on their applications as biosensors. Therefore, this article reviewed the new progress of CHs in tissue repair including nerve tissue regeneration, muscle tissue regeneration, skin tissue regeneration and bone tissue regeneration in the past five years. We first introduced the design and synthesis of different types of CHs such as carbon-based CHs, conductive polymer-based CHs, metal-based CHs, ionic CHs, and composite CHs, and the types and mechanisms of tissue repair promoted by CHs including anti-bacterial, antioxidant and anti-inflammatory properties, stimulus response and intelligent delivery, real-time monitoring, and promoted cell proliferation and tissue repair related pathway activation, which provides a useful reference for further preparation of bio-safer and more efficient CHs used in tissue regeneration.
Collapse
Affiliation(s)
- Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an 710049 China +86-29-83395131 +86-29-83395340
| | - Lipeng Qiao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an 710049 China +86-29-83395131 +86-29-83395340
| | - Bowen Qiao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an 710049 China +86-29-83395131 +86-29-83395340
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an 710049 China +86-29-83395131 +86-29-83395340
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University Xi'an 710049 China
| |
Collapse
|
9
|
Falbo F, Spizzirri UG, Restuccia D, Aiello F. Natural Compounds and Biopolymers-Based Hydrogels Join Forces to Promote Wound Healing. Pharmaceutics 2023; 15:271. [PMID: 36678899 PMCID: PMC9863749 DOI: 10.3390/pharmaceutics15010271] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Rapid and complete wound healing is a clinical emergency, mainly in pathological conditions such as Type 2 Diabetes mellitus. Many therapeutic tools are not resolutive, and the research for a more efficient remedial remains a challenge. Wound dressings play an essential role in diabetic wound healing. In particular, biocompatible hydrogels represent the most attractive wound dressings due to their ability to retain moisture as well as ability to act as a barrier against bacteria. In the last years, different functionalized hydrogels have been proposed as wound dressing materials, showing encouraging outcomes with great benefits in the healing of the diabetic wounds. Specifically, because of their excellent biocompatibility and biodegradability, natural bioactive compounds, as well as biomacromolecules such as polysaccharides and protein, are usually employed in the biomedical field. In this review, readers can find the main discoveries regarding the employment of naturally occurring compounds and biopolymers as wound healing promoters with antibacterial activity. The emerging approaches and engineered devices for effective wound care in diabetic patients are reported and deeply investigated.
Collapse
Affiliation(s)
| | | | | | - Francesca Aiello
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, Edificio Poli-Funzionale, 87036 Rende, CS, Italy
| |
Collapse
|
10
|
Wang Q, Qiu W, Li M, Li N, Li X, Qin X, Wang X, Yu J, Li F, Huang L, Wu D. Mussel-inspired multifunctional hydrogel dressing with hemostasis, hypoglycemic, photothermal antibacterial properties on diabetic wounds. Biomater Sci 2022; 10:4796-4814. [PMID: 35852356 DOI: 10.1039/d2bm00433j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To meticulously establish an efficient photothermal multifunctional hydrogel dressing is a prospective strategy for the treatment of diabetic chronic wounds. Herein, glucose oxidase (GOx) was added to polydopamine/acrylamide (PDA/AM) hydrogels to reduce hyperglycemia to a normal level (3.9-6.1 mmol L-1) and enhance compressive properties (55 kPa) and adhesive properties (32.69 kPa), which are capable of hemostasis in the wound. Then, MnO2 nanoparticles were encapsulated into a polydopamine/acrylamide (PDA/AM) hydrogel, endowing it with excellent antibacterial properties (E. coli and S. aureus were 97.87% and 99.99%) under the irradiation of 808 nm NIR; meanwhile, the biofilm was eliminated completely. Besides, O2 was generated (18 mg mL-1) by the decomposition of H2O2 under the catalysis of MnO2, which could accelerate the formation of angiogenesis and promote the crawling and proliferation of cells. Furthermore, the diabetic wound in vivo treated with the PDA/AM/GOx/MnO2 hydrogel had a less inflammatory response and faster healing speed, which was completely healed in 14 days. Therefore, the multifunctional hydrogels with the capability of high compressible, hemostasis, antibacterial, hyperglycemia manipulation, and O2 generation, demonstrate promise in diabetic chronic wound dressing.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Weiwang Qiu
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Mengna Li
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Na Li
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Xiaohong Qin
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Xueli Wang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Faxue Li
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China. .,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Liqian Huang
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China. .,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Dequn Wu
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China. .,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
11
|
Zhou C, Wu T, Xie X, Song G, Ma X, Mu Q, Huang Z, Liu X, Sun C, Xu W. Advances and challenges in conductive hydrogels: From properties to applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Jia B, Du X, Wang W, Qu Y, Liu X, Zhao M, Li W, Li Y. Nanophysical Antimicrobial Strategies: A Rational Deployment of Nanomaterials and Physical Stimulations in Combating Bacterial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105252. [PMID: 35088586 PMCID: PMC8981469 DOI: 10.1002/advs.202105252] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Indexed: 05/02/2023]
Abstract
The emergence of bacterial resistance due to the evolution of microbes under antibiotic selection pressure, and their ability to form biofilm, has necessitated the development of alternative antimicrobial therapeutics. Physical stimulation, as a powerful antimicrobial method to disrupt microbial structure, has been widely used in food and industrial sterilization. With advances in nanotechnology, nanophysical antimicrobial strategies (NPAS) have provided unprecedented opportunities to treat antibiotic-resistant infections, via a combination of nanomaterials and physical stimulations. In this review, NPAS are categorized according to the modes of their physical stimulation, which include mechanical, optical, magnetic, acoustic, and electrical signals. The biomedical applications of NPAS in combating bacterial infections are systematically introduced, with a focus on their design and antimicrobial mechanisms. Current challenges and further perspectives of NPAS in the clinical treatment of bacterial infections are also summarized and discussed to highlight their potential use in clinical settings. The authors hope that this review will attract more researchers to further advance the promising field of NPAS, and provide new insights for designing powerful strategies to combat bacterial resistance.
Collapse
Affiliation(s)
- Bingqing Jia
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Xuancheng Du
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Weijie Wang
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Yong‐Qiang Li
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
- Suzhou Research InstituteShandong UniversitySuzhou215123China
| |
Collapse
|
13
|
Injectable conductive and angiogenic hydrogels for chronic diabetic wound treatment. J Control Release 2022; 344:249-260. [DOI: 10.1016/j.jconrel.2022.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022]
|
14
|
Hu W, Wang Y, Chen J, Yu P, Tang F, Hu Z, Zhou J, Liu L, Qiu W, Ye Y, Jia Y, Zhou S, Long J, Zeng Z. Regulation of biomaterial implantation-induced fibrin deposition to immunological functions of dendritic cells. Mater Today Bio 2022. [PMID: 35252832 DOI: 10.1016/j.mtadv.2022.100224] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
The performance of implanted biomaterials is largely determined by their interaction with the host immune system. As a fibrous-like 3D network, fibrin matrix formed at the interfaces of tissue and material, whose effects on dendritic cells (DCs) remain unknown. Here, a bone plates implantation model was developed to evaluate the fibrin matrix deposition and DCs recruitment in vivo. The DCs responses to fibrin matrix were further analyzed by a 2D and 3D fibrin matrix model in vitro. In vivo results indicated that large amount of fibrin matrix deposited on the interface between the tissue and bone plates, where DCs were recruited. Subsequent in vitro testing denoted that DCs underwent significant shape deformation and cytoskeleton reorganization, as well as mechanical property alteration. Furthermore, the immune function of imDCs and mDCs were negatively and positively regulated, respectively. The underlying mechano-immunology coupling mechanisms involved RhoA and CDC42 signaling pathways. These results suggested that fibrin plays a key role in regulating DCs immunological behaviors, providing a valuable immunomodulatory strategy for tissue healing, regeneration and implantation.
Collapse
Affiliation(s)
- Wenhui Hu
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Yun Wang
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Jin Chen
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Peng Yu
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Fuzhou Tang
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Zuquan Hu
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Jing Zhou
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Lina Liu
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Wei Qiu
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Yuannong Ye
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Yi Jia
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Shi Zhou
- Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
| | - Jinhua Long
- Department of Head & Neck, Affiliated Tumor Hospital of Guizhou Medical University, Guiyang, 550004, PR China
| | - Zhu Zeng
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550004, PR China
| |
Collapse
|