1
|
Xiao Y, Wang H, Gao C, Ye X, Lai Y, Chen M, Ren X. Fluorescence sensing techniques for quality evaluation of traditional Chinese medicines: a review. J Mater Chem B 2024; 12:12412-12436. [PMID: 39530288 DOI: 10.1039/d4tb01886a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Traditional Chinese medicines (TCMs) are highly valued and widely used worldwide. However, their complex compositions and various preparation processes have brought considerable challenges to the quality evaluation of Chinese medicines. The traditional methods for TCM quality evaluation suffer from the problems of cumbersome sample preparation, a long detection time, low sensitivity, etc. A more efficient and accurate evaluation method is urgently needed to ensure the stability and reliability of the quality of TCMs. As an emerging analytical technology, a fluorescent probe has the advantages of high sensitivity, high selectivity, easy operation, etc. It is capable of generating a specific fluorescent signal response to specific components in traditional Chinese medicines, realizing rapid and accurate detection of target components, which effectively solves the many difficulties of traditional methods. The purpose of this paper is to discuss the application of fluorescent probes in the quality evaluation of traditional Chinese medicines and the challenges they face. By introducing the principles, advantages and specific application cases of fluorescent probe technology in the quality evaluation of traditional Chinese medicines, we hope to provide new and efficient analytical ideas for the quality evaluation of traditional Chinese medicines.
Collapse
Affiliation(s)
- Yanyu Xiao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chenxia Gao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xinyi Ye
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yuting Lai
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Meiling Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Gao YY, He J, Li XH, Li JH, Wu H, Wen T, Li J, Hao GF, Yoon J. Fluorescent chemosensors facilitate the visualization of plant health and their living environment in sustainable agriculture. Chem Soc Rev 2024; 53:6992-7090. [PMID: 38841828 DOI: 10.1039/d3cs00504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Globally, 91% of plant production encounters diverse environmental stresses that adversely affect their growth, leading to severe yield losses of 50-60%. In this case, monitoring the connection between the environment and plant health can balance population demands with environmental protection and resource distribution. Fluorescent chemosensors have shown great progress in monitoring the health and environment of plants due to their high sensitivity and biocompatibility. However, to date, no comprehensive analysis and systematic summary of fluorescent chemosensors used in monitoring the correlation between plant health and their environment have been reported. Thus, herein, we summarize the current fluorescent chemosensors ranging from their design strategies to applications in monitoring plant-environment interaction processes. First, we highlight the types of fluorescent chemosensors with design strategies to resolve the bottlenecks encountered in monitoring the health and living environment of plants. In addition, the applications of fluorescent small-molecule, nano and supramolecular chemosensors in the visualization of the health and living environment of plants are discussed. Finally, the major challenges and perspectives in this field are presented. This work will provide guidance for the design of efficient fluorescent chemosensors to monitor plant health, and then promote sustainable agricultural development.
Collapse
Affiliation(s)
- Yang-Yang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jie He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Xiao-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jian-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Hong Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Ting Wen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jun Li
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
3
|
Cheng M, Zhang J, Huang T, Qin L, Dong H, Liao F, Fan H. A dual-mode sensor platform with adjustable electrochemiluminescence-fluorescence for selective detection of paraquat pesticide. Food Chem 2024; 430:137030. [PMID: 37523820 DOI: 10.1016/j.foodchem.2023.137030] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
This study presents functionalized metal-organic frameworks nanosheets (RuMOFNSs) with strong electrochemiluminescence (ECL) and fluorescence (FL) properties and a novel signal marker-tetraferrocene. Based on the efficient quenching effect of the tetraferrocene on RuMOFNSs, a "signal switch" ECL-FL dual-mode sensor is constructed for sensitive detection of paraquat (PQ). ECL and FL signals are annihilated after adding paraquat-aptamer DNA (PQ-Apt DNA) labeled with tetraferrocene since it is close to RuMOFNSs. PQ is added, and the strong binding and intermolecular interaction between PQ-Apt DNA and PQ induces spatial separation, with tetraferrocene groups far away from RuMOFNSs. At this point, ECL and FL signals are restored. The change in ECL and FL signals realized the quantitative determination of the PQ solution. In addition, the dual-mode sensor exhibits high sensitivity and specificity with detection limits as low as 0.008 ng/mL and 0.059 ng/mL. The proposed sensor is successfully applied to determine PQ, indicating its great application potential in the food industry.
Collapse
Affiliation(s)
- Mengqing Cheng
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China
| | - Jing Zhang
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China
| | - Ting Huang
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China
| | - Longshua Qin
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China
| | - Huanhuan Dong
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Fusheng Liao
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Hao Fan
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| |
Collapse
|
4
|
Ge J, Wang LJ, Pan X, Zhang C, Wu MY, Feng S. Colorimetric and ratiometric supramolecular AIE fluorescent probe for the on-site monitoring of fipronil. Analyst 2023; 148:5395-5401. [PMID: 37754754 DOI: 10.1039/d3an01333b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The overuse of fipronil (FPN, a broad-spectrum insecticide) in agriculture has brought great concerns for environmental pollution and food safety. The development of a rapid, reliable, and portable analytical method for the on-site monitoring of FPN is therefore of great significance but is full of challenge. Herein, a novel supramolecular probe using human serum albumin (HSA) as the host and an aggregation-induced emission-active fluorescence probe LIQ-TPA-TZ as the guest was developed for the colorimetric and ratiometric detection of FPN, displaying fast response (30 s), high sensitivity (LOD ∼ 0.05 μM), and good selectivity and anti-interference performance. Moreover, portable paper-based test strips could be facilely obtained and utilized for the determination of FPN, showing colorimetric changes from yellow to orange. This supramolecular probe also demonstrated great potential in real applications for choosing the best cleaning method to reduce the residue rate of FPN on apples. This study provides a versatile tool for the fast and real-time analysis of FPN, which greatly benefits the on-site determination of pesticides with the use of simple testing apparatus.
Collapse
Affiliation(s)
- Junxu Ge
- School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou, Zhejiang, 325000, China
| | - Li-Juan Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xiu Pan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Chungu Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Ming-Yu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
5
|
Huang D, Zhao Y, Fang M, Shen P, Xu H, He Y, Chen S, Si Z, Xu Z. Magnetofluid-integrated biosensors based on DNase-dead Cas12a for visual point-of-care testing of HIV-1 by an up and down chip. LAB ON A CHIP 2023; 23:4265-4275. [PMID: 37712284 DOI: 10.1039/d3lc00558e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The CRISPR Cas system, as a novel nucleic acid detection tool, is often hindered by cumbersome experimental procedures, complicated reagent transfer processes, and associated aerosol pollution risks. In this study, an integrated nucleic acid detection platform named "up and down chip" was developed, which combined RT-RAA technology for nucleic acid amplification, DNase-dead Cas12a-modified magnetic beads for specific recognition of target nucleic acid, and HRP-TMB chromogenic reaction for signal output in different chambers of a single microfluidic chip. The magnetic beads were migrated in an up-and-down manner between different chambers through magnetic driving, achieving a "sample-in, result-out" detection mode. By introducing a homemade heating box for temperature control during the reaction and using the naked eye or a smartphone APP for color-based signal reading, no professional or precise instruments were required in this platform. Using this platform, highly sensitive detection of the HIV-1 genome as low as 250 copies (CPs) per mL was achieved within 100 min while maintaining good detection performance against common variants as well as excellent specificity and anti-interference ability. In addition, compared with qRT-PCR, it also exhibited good accuracy for 56 spiked plasma samples, indicating its promising potential for clinical application.
Collapse
Affiliation(s)
- Di Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yekai Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mengjun Fang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Peijie Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hu Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yichen He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhenjun Si
- Hangzhou FasTech Biotechnology Company Limited, Hangzhou 310005, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Switchable hydrophilicity solvent-based microextraction coupled with fluorescent detection of dichlorvos. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Wang X, He K, Hu Y, Tang M. A review of pulmonary toxicity of different types of quantum dots in environmental and biological systems. Chem Biol Interact 2022; 368:110247. [DOI: 10.1016/j.cbi.2022.110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|