1
|
Fan R, Chen S, Lan F, Li W, Zhu Y, Zhang L, Zhang Y, Li L. Surface-Enhanced Raman Scattering (SERS)-based biosensors for advanced extracellular vesicle detection: A review. Anal Chim Acta 2025; 1336:343264. [PMID: 39788643 DOI: 10.1016/j.aca.2024.343264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Extracellular Vesicles (EVs), as nano-scale vesicles rich in biological information, hold an indispensable status in the biomedical field. However, due to the intrinsic small size and low abundance of EVs, their effective detection presents significant challenges. Although various EV detection techniques exist, their sensitivity and ease of operation still need enhancement. RESULTS Surface-Enhanced Raman Scattering (SERS) is known for its high sensitivity and specificity. It stands out in tackling the challenges that traditional EV detection methods face. In this review, we focus on the application of SERS-based biosensors in EV detection. It provides a detailed introduction to the recognition and capture of EVs, strategies for mediating signal amplification, and detection of EV biomarkers. Finally, the challenges and prospects of SERS-based biosensors are discussed. SIGNIFICANCE SERS-based biosensor enhances the Raman signal, allowing for the detection of biomarkers at low concentrations. This capability reveals its substantial potential in identifying EVs and analyzing molecular data. It paves the path for advanced EV detection.
Collapse
Affiliation(s)
- Rui Fan
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Siting Chen
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Fei Lan
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Wenbin Li
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Yitong Zhu
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Lifeng Zhang
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Ye Zhang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| | - Ling Li
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Wu Y, Wang Y, Mo T, Liu Q. Surface-enhanced Raman scattering-based strategies for tumor markers detection: A review. Talanta 2024; 280:126717. [PMID: 39167940 DOI: 10.1016/j.talanta.2024.126717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
The presence of malignant tumors poses a significant threat to people's life and well-being. As biochemical parameters indicate the occurrence and development of tumors, tumor markers play a pivotal role in early cancer detection, treatment, prognosis, efficient monitoring, and other aspects. Surface-enhanced Raman scattering (SERS) is considered a potent tool for the detection of tumor markers owing to its exceptional advantages encompassing high sensitivity, superior selectivity, rapid analysis speed, and photobleaching resistance nature. This review aims to provide a comprehensive understanding of SERS applications in the detection of tumor markers. Firstly, we introduce the SERS enhancement mechanism, classification of active substrates, and SERS detection techniques. Secondly, the latest research progress of in vitro SERS detection of different types of tumor markers in body fluids and the application of SERS imaging in biomedical imaging are highlighted in sections of the review. Finally, according to the current status of SERS detection of tumor markers, the challenges and problems of SERS in biomedical detection are discussed, and insights into future developments in SERS are offered.
Collapse
Affiliation(s)
- Yafang Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yinglin Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
3
|
Xu C, Shi H, Tan Z, Zheng Y, Xu W, Dan Z, Liao J, Dai Z, Zhao Y. Generation, manipulation, detection and biomedical applications of magnetic droplets in microfluidic chips. Analyst 2024; 149:5591-5616. [PMID: 39523834 DOI: 10.1039/d4an01175a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Microfluidic systems incorporating magnetic droplets have emerged as a focal point of significant interest within the biomedical domain. The allure of these systems lies in their capacity to offer precise control, enable contactless operation, and accommodate minimal sample concentration requirements. Such remarkable features serve to mitigate errors arising from human operation and other factors during cell or molecular detection. By providing innovative solutions for molecular diagnostics and immunoassay applications, magnetic droplet microfluidics enhance the accuracy and efficiency of these procedures. This review undertakes a comprehensive examination of the research progress in microfluidic systems centered around magnetic droplets. It adheres to a sequential presentation approach, commencing from the fundamental operation principles, specifically the generation of magnetic droplets on the microfluidic chip, and proceeding to their transmission and mixing within the microchannel via an array of operating techniques. Additionally, the relevant detection technologies associated with magnetic drop microfluidics and their numerous applications within the biomedical field are systematically classified and reviewed. The overarching objective of this review is to spotlight key advancements and offer valuable insights into the future trajectory of this burgeoning field.
Collapse
Affiliation(s)
- Chenyang Xu
- Department of Biomedical Engineering, School of Instrument Science and Optoelectronic Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, People's Republic of China.
| | - Huanhuan Shi
- Department of Biomedical Engineering, School of Instrument Science and Optoelectronic Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, People's Republic of China.
- Key Laboratory of Nondestructive Testing (Nanchang Hangkong University), Ministry of Education, Nanchang, Jiangxi 330063, People's Republic of China
| | - Zhongjian Tan
- Key Laboratory of Nondestructive Testing (Nanchang Hangkong University), Ministry of Education, Nanchang, Jiangxi 330063, People's Republic of China
| | - Yun Zheng
- Key Laboratory of Nondestructive Testing (Nanchang Hangkong University), Ministry of Education, Nanchang, Jiangxi 330063, People's Republic of China
| | - Weizheng Xu
- Key Laboratory of Nondestructive Testing (Nanchang Hangkong University), Ministry of Education, Nanchang, Jiangxi 330063, People's Republic of China
| | - Zhengxian Dan
- Department of Biomedical Engineering, School of Instrument Science and Optoelectronic Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, People's Republic of China.
| | - Jiacong Liao
- Department of Biomedical Engineering, School of Instrument Science and Optoelectronic Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, People's Republic of China.
| | - Zhiying Dai
- Department of Biomedical Engineering, School of Instrument Science and Optoelectronic Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, People's Republic of China.
| | - Yali Zhao
- The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, Changsha, 410006, People's Republic of China.
| |
Collapse
|
4
|
Rojas Martínez V, Lee E, Oh JW. Exploring Plasmonic Standalone Surface-Enhanced Raman Scattering Nanoprobes for Multifaceted Applications in Biomedical, Food, and Environmental Fields. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1839. [PMID: 39591079 PMCID: PMC11597564 DOI: 10.3390/nano14221839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is an innovative spectroscopic technique that amplifies the Raman signals of molecules adsorbed on rough metal surfaces, making it pivotal for single-molecule detection in complex biological and environmental matrices. This review aims to elucidate the design strategies and recent advancements in the application of standalone SERS nanoprobes, with a special focus on quantifiable SERS tags. We conducted a comprehensive analysis of the recent literature, focusing on the development of SERS nanoprobes that employ novel nanostructuring techniques to enhance signal reliability and quantification. Standalone SERS nanoprobes exhibit significant enhancements in sensitivity and specificity due to optimized hot spot generation and improved reporter molecule interactions. Recent innovations include the development of nanogap and core-satellite structures that enhance electromagnetic fields, which are crucial for SERS applications. Standalone SERS nanoprobes, particularly those utilizing indirect detection mechanisms, represent a significant advancement in the field. They hold potential for wide-ranging applications, from disease diagnostics to environmental monitoring, owing to their enhanced sensitivity and ability to operate under complex sample conditions.
Collapse
Affiliation(s)
| | | | - Jeong-Wook Oh
- Department of Chemistry, Hankuk University of Foreign Studies (HUFS), Yongin 17035, Republic of Korea; (V.R.M.); (E.L.)
| |
Collapse
|
5
|
Zhang S, Chen F, Zhang Y, Xu Y, Wang L, Wang X, Jia L, Chen Y, Xu Y, Zhang Z, Deng B. SERS detection platform based on a nucleic acid aptamer-functionalized Au nano-dodecahedron array for efficient simultaneous testing of colorectal cancer-associated microRNAs. BIOMEDICAL OPTICS EXPRESS 2024; 15:3366-3381. [PMID: 38855705 PMCID: PMC11161369 DOI: 10.1364/boe.520161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/23/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024]
Abstract
A surface-enhanced Raman scattering (SERS) detection platform was constructed based on Au nano-dodecahedrons (AuNDs) functionalized with nucleic acid aptamer-specific binding and self-assembly techniques. SERS labels were prepared by modifying Raman signaling molecules and complementary aptamer chains and were bound on the aptamer-functionalized AuNDs array. Using this protocol, the limits of detection (LODs) of miR-21 and miR-18a in the serum were 6.8 pM and 7.6 pM, respectively, and the detection time was 5 min. Additionally, miR-21 and miR-18a were detected in the serum of a mouse model of colorectal cancer. The results of this protocol were consistent with quantitative real-time polymerase chain reaction (qRT-PCR). This method provides an efficient and rapid method for the simultaneous testing of miRNAs, which has great potential clinical value for the early detection of colorectal cancer (CRC).
Collapse
Affiliation(s)
- Shuofeng Zhang
- Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Fengsong Chen
- Gastroenterology Department, Nantong Haimen People's Hospital, Nantong 226600, China
| | - Yanqing Zhang
- Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yemin Xu
- Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Lu Wang
- Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Xiya Wang
- Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Long Jia
- Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yong Chen
- Department of Medical Oncology, Affiliated Hospital of Yangzhou University, Yangzhou 225001, China
| | - Yongcheng Xu
- Department of Medical Oncology, Affiliated Hospital of Yangzhou University, Yangzhou 225001, China
| | - Zhengrong Zhang
- Department of Medical Oncology, Affiliated Hospital of Yangzhou University, Yangzhou 225001, China
| | - Bin Deng
- Department of Gastroenterology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225001 Yangzhou, China
| |
Collapse
|
6
|
Tiwari H, Rai N, Singh S, Gupta P, Verma A, Singh AK, Kajal, Salvi P, Singh SK, Gautam V. Recent Advances in Nanomaterials-Based Targeted Drug Delivery for Preclinical Cancer Diagnosis and Therapeutics. Bioengineering (Basel) 2023; 10:760. [PMID: 37508788 PMCID: PMC10376516 DOI: 10.3390/bioengineering10070760] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Nano-oncology is a branch of biomedical research and engineering that focuses on using nanotechnology in cancer diagnosis and treatment. Nanomaterials are extensively employed in the field of oncology because of their minute size and ultra-specificity. A wide range of nanocarriers, such as dendrimers, micelles, PEGylated liposomes, and polymeric nanoparticles are used to facilitate the efficient transport of anti-cancer drugs at the target tumor site. Real-time labeling and monitoring of cancer cells using quantum dots is essential for determining the level of therapy needed for treatment. The drug is targeted to the tumor site either by passive or active means. Passive targeting makes use of the tumor microenvironment and enhanced permeability and retention effect, while active targeting involves the use of ligand-coated nanoparticles. Nanotechnology is being used to diagnose the early stage of cancer by detecting cancer-specific biomarkers using tumor imaging. The implication of nanotechnology in cancer therapy employs photoinduced nanosensitizers, reverse multidrug resistance, and enabling efficient delivery of CRISPR/Cas9 and RNA molecules for therapeutic applications. However, despite recent advancements in nano-oncology, there is a need to delve deeper into the domain of designing and applying nanoparticles for improved cancer diagnostics.
Collapse
Affiliation(s)
- Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Akhilesh Kumar Singh
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Kajal
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar 140306, India
| | - Prafull Salvi
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar 140306, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
7
|
Gong T, Das CM, Yin MJ, Lv TR, Singh NM, Soehartono AM, Singh G, An QF, Yong KT. Development of SERS tags for human diseases screening and detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|