1
|
Yang L, Li P, Bai L, Cao J, Yan H. Innovative hierarchical porous hydrophilic molecularly imprinted resin for high-throughput detection of perfluorocarboxylic acids in milk using 96-well plate SPE-LC-MS/MS. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135989. [PMID: 39357359 DOI: 10.1016/j.jhazmat.2024.135989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The accumulation of perfluorocarboxylic acids (PFCAs) in environment and foods represents a significant threat to public health due to the long-term ingestion of contaminated food. This study introduces a novel adsorbent, the hierarchical porous hydrophilic molecularly imprinted resin (HPHMIR), which was synthesized by integrating molecular imprinting techniques with hydrophilic resins. The HPHMIR, characterized by its extensive mesoporous structure (average pore width ∼9.71 nm) and favorable imprinting factors (2.6-5.0), facilitates the effective adsorption of PFCAs from complex matrices through multiple interaction mechanisms, including hydrogen bonding and electrostatic interactions. This innovative material was employed in a 96-well plate format for solid-phase extraction (SPE), and combined with LC-MS/MS, a high-throughput method for the determination of PFCAs in milk was developed. The proposed method demonstrated exceptional performance, including excellent linearity (0.48-240 ng mL-1; r ≥ 0.9986), low detection limits (0.04-0.11 ng mL-1), high precision (relative standard deviation ≤ 9.9 %), and satisfactory recovery (75.7-118.1 %). These results highlight the efficacy of the method in extracting trace levels of PFCAs from complicated sample matrices, presenting a promising alternative for monitoring PFCA contamination and advancing public health standards.
Collapse
Affiliation(s)
- Lansen Yang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Sciences, College of Public Health, School of Life Science, Hebei University, Baoding 071002, China
| | - Pengfei Li
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Sciences, College of Public Health, School of Life Science, Hebei University, Baoding 071002, China
| | - Ligai Bai
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Jiankun Cao
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Sciences, College of Public Health, School of Life Science, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Sciences, College of Public Health, School of Life Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Zhong C, Deng J, Yang Y, Zeng H, Feng L, Luan T. Rapid and sensitive determination of legacy and emerging per- and poly-fluoroalkyl substances with solid-phase microextraction probe coupled with mass spectrometry. Talanta 2024; 276:126233. [PMID: 38739954 DOI: 10.1016/j.talanta.2024.126233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
This study was designed to develop a rapid and sensitive method for quantifying legacy and emerging per- and polyfluoroalkyl substances (PFASs) in environmental samples with solid-phase microextraction (SPME) coupled with mass spectrometry (MS). An innovative SPME probe was fabricated via in situ polymerization, and the probe coating was optimized with response surface methodology to maximize the fluorine-fluorine interactions and electrostatic properties and ensure high selectivity for the target PFASs with enrichment factors of 48-491. The coupled SPME and MS provided a rapid and sensitive method for analyses of PFASs, with excellent linearity (r ≥ 0.9962) over the concentration range 0.001-1 μg/L and remarkably low detection limits of 0.1-13.0 ng/L. This method was used to analyze trace PFASs in tap water, river water, and wastewater samples and proved to be a simple and efficient analytical method for selective enrichment and detection of contaminants in the environment.
Collapse
Affiliation(s)
- Chunfei Zhong
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiewei Deng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yunyun Yang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Haishen Zeng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Longkuan Feng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
3
|
Idjaton BIT, Togola A, Ghestem JP, Kastler L, Bristeau S, Ronteltap M, Colombano S, Devau N, Lions J, van Hullebusch ED. Determination of organic fluorinated compounds content in complex samples through combustion ion chromatography methods: a way to define a "Total Per- and Polyfluoroalkyl Substances (PFAS)" parameter? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172589. [PMID: 38657803 DOI: 10.1016/j.scitotenv.2024.172589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Emerging contaminants are a growing concern for scientists and public authorities. The group of per-polyfluoroalkyl substances (PFAS), known as 'forever chemicals', in complex environmental liquid and solid matrices was analysed in this study. The development of global analytical methods based on combustion ion chromatography (CIC) is expected to provide accurate picture of the overall PFAS contamination level via the determination of extractable organic fluorine (EOF) and adsorbable organic fluorine (AOF). The obtained results may be put into perspective with other methods such as targeted analyses (LC-MS/MS). The impact of pH, the presence of dissolved organic carbon and suspended particles on AOF measurements were explored. The effectiveness of the washing step to remove adsorbed inorganic fluorine (IF) has been proven for samples containing up to 8 mgF.L-1. CIC-based methods showed good repeatability and reproducibility for the complex matrices studied. Environmental applications of these methods have been tested. AOF and EOF analyses could explain between 1 % and 23 % and 0.1 % to 2 % of total organic fluorine (TOF), respectively. The sum of PFAS compounds expressed as fluorine could explain from 0.2 % to 11 % and from 0.003 % to 5 % for AOF and EOF, respectively. These results also suggest that some fluorinated compounds are not adsorbed or extractable and/or lost by volatilisation during the application of AOF and EOF analytical procedure. These findings highlight that AOF and EOF are not entirely efficient as proxy to assess "total PFAS" for assessing environmental contamination by PFAS. However, these methods could still be applied to gain a better understanding of the sources and fate of PFAS in the environment.
Collapse
Affiliation(s)
- Babatoundé I T Idjaton
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France; Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
| | - Anne Togola
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France.
| | - Jean Philippe Ghestem
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France
| | - Laura Kastler
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France
| | - Sébastien Bristeau
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France
| | - Mariska Ronteltap
- Delfland Water Authority, Phoenixstraat 32, the Netherlands; TU Delft, Water Management Department, Stevinweg 1, Delft, the Netherlands
| | - Stéfan Colombano
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France
| | - Nicolas Devau
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France
| | - Julie Lions
- BRGM, Direction Eau Environnement Procédés et Analyses, 3 av. Claude-Guillemin - BP 36009, 45060 Orléans, France
| | - Eric D van Hullebusch
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
| |
Collapse
|
4
|
Zarębska M, Bajkacz S, Hordyjewicz-Baran Z. Assessment of legacy and emerging PFAS in the Oder River: Occurrence, distribution, and sources. ENVIRONMENTAL RESEARCH 2024; 251:118608. [PMID: 38447604 DOI: 10.1016/j.envres.2024.118608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
The purpose of the study was to evaluate the occurrence and distribution of emerging contaminants, poly- and perfluoroalkyl substances (PFAS), in the Polish Oder River, aiming to uncover new insights into their environmental impact. The research aimed to identify potential sources of PFAS, assess water quality levels, and verify compliance with European Union environmental quality standards. The concentrations of 25 PFAS (20 legacy and 5 emerging) in 20 samples from intakes upstream and downstream of urban areas were analyzed using novel, developed in these studies, environmental analytical procedures involving solid phase extraction and liquid chromatography-tandem mass spectrometry. The presence of 14 PFAS was confirmed, and the concentration of Σ14PFAS ranged from 7.6 to 68.0 ng/L. The main components were short-chain analogs. PFBA was the most abundant, accounting for about one-third of all PFAS detected. An exception was observed in the waters of the Gliwice Canal, where ADONA represented half of the detected Σ14PFAS. Alternative PFOS replacements were found in all samples. In 11 of 20 water samples, environmental quality standards for PFOS exceeded the limit of 0.65 ng/L. In 5 of 9 cases, the ability of urban areas to increase PFAS levels in the river was determined. 9.5%-54.4% share of alternative PFAS in relation to the sum of the targeted PFAS showing their increasing use as substitutes for phased-out PFOS. Hierarchical cluster analysis was used to identify potential sources of PFAS. Analysis revealed that PFAS in the Oder River most likely originated from domestic and agricultural wastewater, as well as chemical industry discharges. However, the occurrence of PFAS in the Oder River is low and comparable to other recent European studies. These findings provide valuable insights for environmental management to mitigate the risks associated with PFAS pollution in Polish rivers. Moreover, the developed analytical procedure provides a valuable tool that can be successfully applied by other researchers to monitor PFAS in rivers around the world.
Collapse
Affiliation(s)
- Magdalena Zarębska
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic, Analytical Chemistry and Electrochemistry, 6 B. Krzywoustego Str., Gliwice, 44-100, Poland; Lukasiewicz Research Network- Institute of Heavy Organic Synthesis "Blachownia", 9 Energetyków Str., Kędzierzyn-Koźle, 47-225, Poland.
| | - Sylwia Bajkacz
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic, Analytical Chemistry and Electrochemistry, 6 B. Krzywoustego Str., Gliwice, 44-100, Poland.
| | - Zofia Hordyjewicz-Baran
- Lukasiewicz Research Network- Institute of Heavy Organic Synthesis "Blachownia", 9 Energetyków Str., Kędzierzyn-Koźle, 47-225, Poland.
| |
Collapse
|
5
|
He X, Li M, Yu Q, Liu W, Sun S, Li X, Wang Z, Yan X, Li S. Solid phase extraction technology combined with UPLC-MS/MS: a method for detecting 20 β-lactamase antibiotics traces in goat's milk. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38713147 DOI: 10.1039/d4ay00134f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
We develop and validate a method for the rapid determination and identification of 20 β-lactamase antibiotics traces in goat's milk by combining the solid phase extraction technology with ultra-high performance liquid chromatography-tandem mass spectrometry. Goat milk samples were extracted with acetonitrile twice. The supernatant was then extracted and cleaned by solid-phase extraction using divinylbenzene and N-vinylpyrrolidone copolymer. The method was validated, with limits of quantification (LOQs) of 0.3 μg kg-1, specificities of 1/3 LOQ, linearities (R2) > 0.99, recoveries of 80-110%, repeatabilities <10.0%, and intermediate precisions <10.0%. The developed method was suitable for the routine analysis of β-lactamase antibiotics residues in goat's milk and was used to test 76 goat milk samples produced in China.
Collapse
Affiliation(s)
- Xiwen He
- Shaanxi Qinyun Agricultural Products Inspection and Testing Co., Ltd, Weinan, China
- Shaanxi Qinyun Agricultural Science Research Institute, Weinan, China
| | - Ming Li
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Qi Yu
- Beijing Animal Disease Prevention and Control Center, Beijing, China
| | - Wuyan Liu
- Shaanxi Qinyun Agricultural Products Inspection and Testing Co., Ltd, Weinan, China
- Shaanxi Qinyun Agricultural Science Research Institute, Weinan, China
| | - Shufang Sun
- Veterinary Medicine Supervision Institute of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiang Li
- Shaanxi Qinyun Agricultural Products Inspection and Testing Co., Ltd, Weinan, China
| | - Zhaohua Wang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China.
- Centre for Laboratory Animal Pathology Analysis, Institute of Laboratory Animal Science, NHC Key Laboratory of Comparative Medicine, Peking Union Medical College, Beijing, China
| | - Xiaohuan Yan
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Songli Li
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
6
|
Gonkowski S, Ochoa-Herrera V. Poly- and perfluoroalkyl substances (PFASs) in amphibians and reptiles - exposure and health effects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106907. [PMID: 38564994 DOI: 10.1016/j.aquatox.2024.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Poly- and perfluoroalkyl substances (PFASs) are commonly used in various industries and everyday products, including clothing, electronics, furniture, paints, and many others. PFASs are primarily found in aquatic environments, but also present in soil, air and plants, making them one of the most important and dangerous pollutants of the natural environment. PFASs bioaccumulate in living organisms and are especially dangerous to aquatic and semi-aquatic animals. As endocrine disruptors, PFASs affect many internal organs and systems, including reproductive, endocrine, nervous, cardiovascular, and immune systems. This manuscript represents the first comprehensive review exclusively focusing on PFASs in amphibians and reptiles. Both groups of animals are highly vulnerable to PFASs in the natural habitats. Amphibians and reptiles, renowned for their sensitivity to environmental changes, are often used as crucial bioindicators to monitor ecosystem health and environmental pollution levels. Furthermore, the decline in amphibian and reptile populations worldwide may be related to increasing environmental pollution. Therefore, studies investigating the exposure of amphibians and reptiles to PFASs, as well as their impacts on these organisms are essential in modern toxicology. Summarizing the current knowledge on PFASs in amphibians and reptiles in a single manuscript will facilitate the exploration of new research topics in this field. Such a comprehensive review will aid researchers in understanding the implications of PFASs exposure on amphibians and reptiles, guiding future investigations to mitigate their adverse effects of these vital components of ecosystems.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| | - Valeria Ochoa-Herrera
- Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito (USFQ), Quito, 170901, Ecuador; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Nie B, Yu R, Xu G, Chen Y, Deng C, Du J. Analysing pharmacodynamic interactions of traditional Chinese medicine in treating acute pancreatitis based on OPLS method. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1252-1260. [PMID: 38323334 DOI: 10.1039/d3ay02305b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Acute pancreatitis (AP) is a surgical abdominal disease for which the Dachengqi Decoction (DCQD) of traditional Chinese medicine (TCM) is widely used in China. This study aims to analyse the pharmacodynamic interactions and quantitative relationship of DCQD in the treatment of AP based on orthogonal partial least squares (OPLS) analysis. The experimental data show organic chemical components as candidate pharmacodynamic substances (PS) in the blood and include pharmacodynamic indicators (PIs). Taking each PI as the target and using OPLS method to construct three types of mathematical equations, including the mathematical relationship between the pharmacodynamic substances and each target pharmacodynamic indicator (PS-TPI); the mathematical relationship between the pharmacodynamic substances, the pharmacodynamics indicators and each target pharmacodynamic indicator (PS, PI-TPI); and the mathematical relationship between the pharmacodynamic indicators and each target pharmacodynamic indicator (PI-TPI). Through analysis, we find that the R2Y(cum) values and VIP values indicate that PS and PI are the follow-up factors of TPI; the coefficient value indicates that there is a quantitative relationship between the PS and the TPI; and there also is a quantitative relationship between PI and TPI. The results demonstrated that PS and other PIs are the important influencing factors of TPI, and that there are interactions and quantitative relationships among the PIs.
Collapse
Affiliation(s)
- Bin Nie
- School of Computer Science, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Riyue Yu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Guoliang Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Yinfang Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Chunhui Deng
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Jianqiang Du
- School of Computer Science, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
8
|
Mojiri A, Zhou JL, Ozaki N, KarimiDermani B, Razmi E, Kasmuri N. Occurrence of per- and polyfluoroalkyl substances in aquatic environments and their removal by advanced oxidation processes. CHEMOSPHERE 2023; 330:138666. [PMID: 37068615 DOI: 10.1016/j.chemosphere.2023.138666] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 05/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), one of the main categories of emerging contaminants, are a family of fluorinated organic compounds of anthropogenic origin. PFAS can endanger the environment and human health because of their wide application in industries, long-term persistence, unique properties, and bioaccumulation potential. This study sought to explain the accumulation of different PFAS in water bodies. In aquatic environments, PFAS concentrations range extensively from <0.03 (groundwater; Melbourne, Australia) to 51,000 ng/L (Groundwater, Sweden). Additionally, bioaccumulation of PFAS in fish and water biota has been stated to range from 0.2 (Burbot, Lake Vättern, Sweden) to 13,900 ng/g (Bluegill samples, U.S.). Recently, studies have focused on PFAS removal from aqueous solutions; one promising technique is advanced oxidation processes (AOPs), including microwaves, ultrasound, ozonation, photocatalysis, UV, electrochemical oxidation, the Fenton process, and hydrogen peroxide-based and sulfate radical-based systems. The removal efficiency of PFAS ranges from 3% (for MW) to 100% for UV/sulfate radical as a hybrid reactor. Therefore, a hybrid reactor can be used to efficiently degrade and remove PFAS. Developing novel, efficient, cost-effective, and sustainable AOPs for PFAS degradation in water treatment systems is a critical area of research.
Collapse
Affiliation(s)
- Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan.
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan
| | - Bahareh KarimiDermani
- Department of Geological Sciences, Hydrogeology, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Elham Razmi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Norhafezah Kasmuri
- School of Civil Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, 40450, Selangor, Malaysia
| |
Collapse
|
9
|
Barbosa MO, Ratola N, Homem V, Pereira MFR, Silva AMT, Ribeiro ARL, Llorca M, Farré M. Per- and Poly-Fluoroalkyl Substances in Portuguese Rivers: Spatial-Temporal Monitoring. Molecules 2023; 28:1209. [PMID: 36770878 PMCID: PMC9921101 DOI: 10.3390/molecules28031209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Eighteen per-and polyfluoroalkyl substances (PFASs) were investigated in surface waters of four river basins in Portugal (Ave, Leça, Antuã, and Cértima) during the dry and wet seasons. All sampling sites showed contamination in at least one of the seasons. In the dry season, perfluorooctanoate acid (PFOA) and perfluoro-octane sulfonate (PFOS), were the most frequent PFASs, while during the wet season these were PFOA and perfluobutane-sulfonic acid (PFBS). Compounds detected at higher concentrations were PFOS (22.6 ng L-1) and perfluoro-butanoic acid (PFBA) (22.6 ng L-1) in the dry and wet seasons, respectively. Moreover, the prospective environmental risks of PFASs, detected at higher concentrations, were evaluated based on the Risk Quotient (RQ) classification, which comprises acute and chronic toxicity. The results show that the RQ values of eight out of the nine PFASs were below 0.01, indicating low risk to organisms at different trophic levels in the four rivers in both seasons, wet and dry. Nevertheless, in the specific case of perfluoro-tetradecanoic acid (PFTeA), the RQ values calculated exceeded 1 for fish (96 h) and daphnids (48 h), indicating a high risk for these organisms. Furthermore, the RQ values were higher than 0.1, indicating a medium risk for fish, daphnids and green algae (96 h).
Collapse
Affiliation(s)
- Marta O. Barbosa
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Centre for Research and Intervention in Education (CIIE), Faculdade de Psicologia e de Ciências da Educação, Universidade do Porto, Rua Alfredo Allen s/n, 4200-135 Porto, Portugal
| | - Nuno Ratola
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Vera Homem
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - M. Fernando R. Pereira
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adrián M. T. Silva
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana R. L. Ribeiro
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marta Llorca
- ON-HEALTH Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Marinella Farré
- ON-HEALTH Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
10
|
Folorunsho O, Bogush A, Kourtchev I. A new on-line SPE LC-HRMS method for simultaneous analysis of selected emerging contaminants in surface waters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:284-296. [PMID: 36541663 DOI: 10.1039/d2ay01574a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In recent years emerging contaminants (ECs) have received significant attention due to their widespread detection in surface waters and concerns that these compounds can cause adverse ecological and/or human health effects. Therefore, accurate methods for determining and quantifying ECs in surface water are essential for estimating their environmental impact. This work describes the development, validation and application of a sensitive multiclass method for simultaneous determination of 22 per and polyfluorinated alkyl substances (PFASs), 3 pharmaceuticals, 15 pesticides, and 2 bisphenols in surface water using on-line solid phase extraction (SPE) coupled with ultra-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS). The method allows simultaneous sample clean-up from interfering matrices and lower limits of detection (LODs) by injecting a large sample volume into the LC system without compromising chromatographic efficiency and resolution. Linearity of response over several orders of magnitude was demonstrated for all tested compounds (R2 > 0.99), with the LODs ranging from 0.8 and 33.7 pg mL-1, allowing detection of ECs at trace levels in surface water. The method showed acceptable accuracy and precision (CV, % and RE below 20%) for all tested ECs. It also provided recoveries between 60% and 130% for all tested ECs. The validated method was successfully applied for analysis of surface water samples from three rivers (Cam, Ouse and Thames) in England. Several ECs, including perfluorooctanesulfonic acid (PFOS), perfluorobutanesulfonic acid (PFBS), perfluorohexanoic acid (PFHxA), perfluorohexane sulfonic acid (PFHxS), dimethyl-metatoluamide (DEET) and ibuprofen were observed in analysed surface water above the method's limit of quantitation (LOQ), with concentrations ranging between 3.5 and 460 pg mL-1.
Collapse
Affiliation(s)
- Omotola Folorunsho
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| | - Anna Bogush
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| | - Ivan Kourtchev
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| |
Collapse
|