1
|
Chen Q, Zheng Y, Jiang X, Wang Y, Chen Z, Wu D. Nature's carriers: leveraging extracellular vesicles for targeted drug delivery. Drug Deliv 2024; 31:2361165. [PMID: 38832506 DOI: 10.1080/10717544.2024.2361165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
With the rapid development of drug delivery systems, extracellular vesicles (EVs) have emerged as promising stars for improving targeting abilities and realizing effective delivery. Numerous studies have shown when compared to conventional strategies in targeted drug delivery (TDD), EVs-based strategies have several distinguished advantages besides targeting, such as participating in cell-to-cell communications and immune response, showing high biocompatibility and stability, penetrating through biological barriers, etc. In this review, we mainly focus on the mass production of EVs including the challenges and strategies for scaling up EVs production in a cost-effective and reproducible manner, the loading and active targeting methods, and examples of EVs as vehicles for TDD in consideration of potential safety and regulatory issues associated. We also conclude and discuss the rigor and reproducibility of EVs production, the current research status of the application of EVs-based strategies to targeted drug delivery, clinical conversion prospects, and existing chances and challenges.
Collapse
Affiliation(s)
- Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, P. R. China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuhong Jiang
- Epilepsy Center, Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, PR China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Epilepsy Center, Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Vahab SA, V VK, Kumar VS. Exosome-based drug delivery systems for enhanced neurological therapeutics. Drug Deliv Transl Res 2024:10.1007/s13346-024-01710-x. [PMID: 39325272 DOI: 10.1007/s13346-024-01710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Exosomes are small extracellular vesicles naturally secreted by cells into body fluids, enriched with bioactive molecules such as RNAs, proteins, and lipids. These nanosized vesicles play a crucial role in physiological and pathological processes by facilitating intercellular communication and modulating cellular responses, particularly within the central nervous system (CNS). Their ability to cross the blood-brain barrier and reflect the characteristics of their parent cells makes exosomal cargo a promising candidate for biomarkers in the early diagnosis and clinical assessment of neurological conditions. This review offers a comprehensive overview of current knowledge on the characterization of mammalian-derived exosomes, their application as drug delivery systems for neurological disorders, and ongoing clinical trials involving exosome-loaded cargo. Despite their promising attributes, a significant challenge remains the lack of standardized isolation methods, as current techniques are often complex, costly, and require sophisticated equipment, affecting the scalability and affordability of exosome-based therapies. The review highlights the engineering potential of exosomes, emphasizing their ability to be customized for targeted therapeutic delivery through surface modification or conjugation. Future advancements in addressing these challenges and leveraging the unique properties of exosomes could lead to innovative and effective therapeutic strategies in neurology.
Collapse
Affiliation(s)
- Safa A Vahab
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - Vyshma K V
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - Vrinda S Kumar
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India.
| |
Collapse
|
3
|
Mustafa A, Shabbir M, Badshah Y, Khan K, Abid F, Trembley JH, Afsar T, Almajwal A, Razak S. Genetic polymorphism in untranslated regions of PRKCZ influences mRNA structure, stability and binding sites. BMC Cancer 2024; 24:1147. [PMID: 39272077 PMCID: PMC11401371 DOI: 10.1186/s12885-024-12900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Variations in untranslated regions (UTR) alter regulatory pathways impacting phenotype, disease onset, and course of disease. Protein kinase C Zeta (PRKCZ), a serine-threonine kinase, is implicated in cardiovascular, neurological and oncological disorders. Due to limited research on PRKCZ, this study aimed to investigate the impact of UTR genetic variants' on binding sites for transcription factors and miRNA. RNA secondary structure, eQTLs, and variation tolerance analysis were also part of the study. METHODS The data related to PRKCZ gene variants was downloaded from the Ensembl genome browser, COSMIC and gnomAD. The RegulomeDB database was used to assess the functional impact of 5' UTR and 3'UTR variants. The analysis of the transcription binding sites (TFBS) was done through the Alibaba tool, and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) was employed to identify pathways associated with PRKCZ. To predict the effect of variants on microRNA binding sites, PolymiRTS was utilized for 3' UTR variants, and the SNPinfo tool was used for 5' UTR variants. RESULTS The results obtained indicated that a total of 24 variants present in the 3' UTR and 25 variants present in the 5' UTR were most detrimental. TFBS analysis revealed that 5' UTR variants added YY1, repressor, and Oct1, whereas 3' UTR variants added AP-2alpha, AhR, Da, GR, and USF binding sites. The study predicted TFs that influenced PRKCZ expression. RNA secondary structure analysis showed that eight 5' UTR and six 3' UTR altered the RNA structure by either removal or addition of the stem-loop. The microRNA binding site analysis highlighted that seven 3' UTR and one 5' UTR variant altered the conserved site and also created new binding sites. eQTLs analysis showed that one variant was associated with PRKCZ expression in the lung and thyroid. The variation tolerance analysis revealed that PRKCZ was an intolerant gene. CONCLUSION This study laid the groundwork for future studies aimed at targeting PRKCZ as a therapeutic target.
Collapse
Affiliation(s)
- Aneela Mustafa
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Maria Shabbir
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.
| | - Yasmin Badshah
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | | | - Fizzah Abid
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Janeen H Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Nouri Z, Barfar A, Perseh S, Motasadizadeh H, Maghsoudian S, Fatahi Y, Nouri K, Yektakasmaei MP, Dinarvand R, Atyabi F. Exosomes as therapeutic and drug delivery vehicle for neurodegenerative diseases. J Nanobiotechnology 2024; 22:463. [PMID: 39095888 PMCID: PMC11297769 DOI: 10.1186/s12951-024-02681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/30/2024] [Indexed: 08/04/2024] Open
Abstract
Neurodegenerative disorders are complex, progressive, and life-threatening. They cause mortality and disability for millions of people worldwide. Appropriate treatment for neurodegenerative diseases (NDs) is still clinically lacking due to the presence of the blood-brain barrier (BBB). Developing an effective transport system that can cross the BBB and enhance the therapeutic effect of neuroprotective agents has been a major challenge for NDs. Exosomes are endogenous nano-sized vesicles that naturally carry biomolecular cargoes. Many studies have indicated that exosome content, particularly microRNAs (miRNAs), possess biological activities by targeting several signaling pathways involved in apoptosis, inflammation, autophagy, and oxidative stress. Exosome content can influence cellular function in healthy or pathological ways. Furthermore, since exosomes reflect the features of the parental cells, their cargoes offer opportunities for early diagnosis and therapeutic intervention of diseases. Exosomes have unique characteristics that make them ideal for delivering drugs directly to the brain. These characteristics include the ability to pass through the BBB, biocompatibility, stability, and innate targeting properties. This review emphasizes the role of exosomes in alleviating NDs and discusses the associated signaling pathways and molecular mechanisms. Furthermore, the unique biological features of exosomes, making them a promising natural transporter for delivering various medications to the brain to combat several NDs, are also discussed.
Collapse
Affiliation(s)
- Zeinab Nouri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Barfar
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahra Perseh
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Maghsoudian
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Keyvan Nouri
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Fatemeh Atyabi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Mazahir F, Yadav AK. Recent progress in engineered extracellular vesicles and their biomedical applications. Life Sci 2024; 350:122747. [PMID: 38797364 DOI: 10.1016/j.lfs.2024.122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
AIMS To present the recent update on the isolation, engineering techniques for extracellular vesicles, limitations associated with different isolation techniques, different biomedical applications, and challenges of engineered extracellular vesicles for the benefit of researchers from academic, industry, etc. MATERIALS AND METHODS: Peer-reviewed articles from most recognized journals were collected, and presented information was analyzed to discuss collection, chemical, electroporation, cellular, and membrane surface engineering to design extracellular vesicles for various therapeutic applications. In addition, we present the applications and limitations of techniques for the collection of extracellular vesicles. KEY FINDINGS There is a need for isolation techniques with the gold standard. However, advanced extracellular vesicle isolation techniques showed improved recovery, and purity of extracellular vesicles. Tumor therapy is a major part of the therapy section that illustrates the role of engineered extracellular vesicles in synergetic therapy such as phototherapy, theragnostic, and delivery of genetic materials. In addition, extracellular vesicles have shown their potential in the treatment of retinal disorders, neurodegenerative disease, tuberculosis, osteoporosis, inflammatory bowel disease, vaccine production, and wound healing. SIGNIFICANCE Engineered extracellular vesicles can deliver cargo to the specific cells, elicit an immune response and could be used for the development of the vaccines in the future. However, the progress is at the initial stage. Overall, this review will provide a comprehensive understanding and could serve as a reference for researchers in the clinical translation of engineered extracellular vesicles in different biomedical fields.
Collapse
Affiliation(s)
- Farhan Mazahir
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Raebareli, A Transit Campus, Bijnor-Sisendi Road, Bijnor, Lucknow-226002, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Raebareli, A Transit Campus, Bijnor-Sisendi Road, Bijnor, Lucknow-226002, India.
| |
Collapse
|
6
|
Affrald R J, Narayan S. A review: oligodendrocytes in neuronal axonal conduction and methods for enhancing their performance. Int J Neurosci 2024:1-22. [PMID: 38850232 DOI: 10.1080/00207454.2024.2362200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVES This review explores the vital role of oligodendrocytes in axon myelination and efficient neuronal transmission and the impact of dysfunction resulting from neurotransmitter deficiencies related disorders. Furthermore, the review also provides insight into the potential of bionanotechnology for addressing neurodegenerative diseases by targeting oligodendrocytes. METHODS A review of literature in the field was conducted using Google scholar. Systematic searches were performed to identify relevant studies and reviews addressing the role of oligodendrocytes in neural function, the influence of neurotransmitters on oligodendrocyte differentiation, and the potential of nanotechnology-based strategies for targeted therapy of oligodendrocytes. RESULTS This review indicates the mechanisms underlying oligodendrocyte differentiation and the influence of neurotransmitters on this process. The importance of action potentials and neurotransmission in neural function and the susceptibility of damaged nerve axons to ischemic or toxic damage is provided in detail. The potential of bionanotechnology for targeting neurodegenerative diseases using nanotechnology-based strategies, including polymeric, lipid-based, inorganic, organic, and biomimetic nanoparticles, suggests better management of neurodegenerative disorders. CONCLUSION While nanotechnology-based biomaterials show promise for targeted oligodendrocyte therapy in addressing neurodegenerative disorders linked to oligodendrocyte dysfunction, encapsulating neuroprotective agents within nanoparticles offers additional advantages. Nano-based delivery systems effectively protect drugs from degradation and prolong their therapeutic effects, holding promise in overcoming the blood-brain barrier by facilitating drug transport. However, a multifaceted approach is essential to enhance oligodendrocyte differentiation, promote myelin repair, and facilitate myelin dynamics with reduced toxicity. Further research is needed to elucidate the optimal therapeutic approaches and enhance patient outcomes.
Collapse
Affiliation(s)
- Jino Affrald R
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| | - Shoba Narayan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| |
Collapse
|
7
|
Gotoh S, Kawabori M, Fujimura M. Intranasal administration of stem cell-derived exosomes for central nervous system diseases. Neural Regen Res 2024; 19:1249-1255. [PMID: 37905871 PMCID: PMC11467946 DOI: 10.4103/1673-5374.385875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Exosomes, lipid bilayer-enclosed small cellular vesicles, are actively secreted by various cells and play crucial roles in intercellular communication. These nanosized vesicles transport internalized proteins, mRNA, miRNA, and other bioactive molecules. Recent findings have provided compelling evidence that exosomes derived from stem cells hold great promise as a therapeutic modality for central nervous system disorders. These exosomes exhibit multifaceted properties including anti-apoptotic, anti-inflammatory, neurogenic, and vasculogenic effects. Furthermore, exosomes offer several advantages over stem cell therapy, such as high preservation capacity, low immunogenicity, the ability to traverse the blood-brain barrier, and the potential for drug encapsulation. Consequently, researchers have turned their attention to exosomes as a novel therapeutic avenue. Nonetheless, akin to the limitations of stem cell treatment, the limited accumulation of exosomes in the injured brain poses a challenge to their clinical application. To overcome this hurdle, intranasal administration has emerged as a non-invasive and efficacious route for delivering drugs to the central nervous system. By exploiting the olfactory and trigeminal nerve axons, this approach enables the direct transport of therapeutics to the brain while bypassing the blood-brain barrier. Notably, exosomes, owing to their small size, can readily access the nerve pathways using this method. As a result, intranasal administration has gained increasing recognition as an optimal therapeutic strategy for exosome-based treatments. In this comprehensive review, we aim to provide an overview of both basic and clinical research studies investigating the intranasal administration of exosomes for the treatment of central nervous system diseases. Furthermore, we elucidate the underlying therapeutic mechanisms and offer insights into the prospect of this approach.
Collapse
Affiliation(s)
- Shuho Gotoh
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Masahito Kawabori
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| |
Collapse
|
8
|
Shamshiripour P, Rahnama M, Nikoobakht M, Rad VF, Moradi AR, Ahmadvand D. Extracellular vesicles derived from dendritic cells loaded with VEGF-A siRNA and doxorubicin reduce glioma angiogenesis in vitro. J Control Release 2024; 369:128-145. [PMID: 38522817 DOI: 10.1016/j.jconrel.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Numerous attempts have been devoted to designing anti-angiogenic agents as a strategy to slow tumor growth and progression. Clinical applications of conventional anti-angiogenic agents face some challenges, e.g., off-target effects for TKIs and also low solid tumor penetration for mAbs. Furthermore, although anti-angiogenic therapy provides a normalization window for better chemo-RT response, in long-term treatments, tumor hypoxia as a result of total removal of VEGF-A by mAbs from the TME or complete blockade of TK receptors induces over-activation of compensatory angiogenic pathways, causing escape. Herein, we investigate the efficacy of si-DOX-DC-EVs to reduce glioma angiogenesis and invasiveness. METHODS Mature DCs were generated from PBMC and EVs were isolated from the DCs culture media. siRNA and Doxorubicin were loaded into EVs by EP and incubation. Afterward, the uptake of DC-EVs was assessed by flow cytometry, and the subcellular localization of EVs was tested by confocal imaging. Tube formation assay was performed to assess the efficacy of si-DOX-DC-EVs to reduce tumor angiogenesis which was analyzed by DHM. Morphometric analysis of apoptotic cells was performed by DHM and confocal imaging and further, ELISA was performed for hypoxia-related and angiogenic cytokines. The impact of our theranostic system "si-DOX-DC-MVs" on the formation of vascular mimics, colonies, and invasion of C6 cells was checked in vitro. Afterward, orthotropic rat models of glioma were generated and the optimal administration route was selected by in vivo fluorescent analysis. Then, the microvessel density, vimentin expression, and accumulation of immune cells in tumoral tissues were assessed by IHC. Finally, necropsy and autopsy analyses were performed to check the safety of our theranostic agent. RESULTS DC-EVs loaded with si-DOX-DC-EVs were successfully uptaken by cells with different subcellular trafficking for MVs and exosomes, reduced tumor angiogenesis in DHM analysis, and induced apoptosis in tumoral cells. Moreover, using DHM, we performed a detailed label-free analysis of tip cells which suggested that the tip cells in si-DC-MV treatments lost their geometrical migration capacity to form tube-like structures. Furthermore, the ELISAs performed highlighted that there is a mild overactivation of compensatory Tie2/Ang2 pathway after VEGF-A blockade which confers with severe hypoxia and sustains normal angiogenesis which is the optimal goal of anti-angiogenesis therapy for cancer to avoid resistance.The results of our VM analyses indicated that si-DOX-DC-MVs completely inhibited VM process. Moreover, the invasion, migration, and colony formation of the C6 cells treated with si-DOX-MVs were the least among all treatments. IN was the optimal route of administration. The MVD analyses indicated that si-DOX-DC-MVs reduced the number of tumoral microvessels and normalized vessel morphology. Intense CD8+ T cells were observed near the tumoral vessels in the si-DOX-DC-MVs group and with minimal activation of MT (low Vimentin expression). Necropsy and toxicology results proved that the theranostic system proposed is safe. CONCLUSIONS DC-EVs loaded with VEGF-A siRNA and Doxorubicin were more potent than BV alone as a multi-disciplinary strategy that combats glioma growth by cytotoxic impacts of DOX and inhibits angiogenesis by VEGF-A siRNAs with excess immunologic benefits from DC-EVs. This next-generation anti-angiogenic agent normalizes tumor vessel density rather than extensively eliminating tumor vessels causing hypoxia and mesenchymal transition.
Collapse
Affiliation(s)
- Parisa Shamshiripour
- Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Molecular Imaging Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mehrana Rahnama
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mehdi Nikoobakht
- Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Neurosurgery, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Vahideh Farzam Rad
- Department of Physics, Institute for Advanced Studies in Basic Sciences, (IASBS), Zanjan, Iran
| | - Ali-Reza Moradi
- Department of Physics, Institute for Advanced Studies in Basic Sciences, (IASBS), Zanjan, Iran; School of NanoScience, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Davoud Ahmadvand
- Department of Molecular Imaging Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
9
|
Xu K, Duan S, Wang W, Ouyang Q, Qin F, Guo P, Hou J, He Z, Wei W, Qin M. Nose-to-brain delivery of nanotherapeutics: Transport mechanisms and applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1956. [PMID: 38558503 DOI: 10.1002/wnan.1956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
The blood-brain barrier presents a key limitation to the administration of therapeutic molecules for the treatment of brain disease. While drugs administered orally or intravenously must cross this barrier to reach brain targets, the unique anatomical structure of the olfactory system provides a route to deliver drugs directly to the brain. Entering the brain via receptor, carrier, and adsorption-mediated transcytosis in the nasal olfactory and trigeminal regions has the potential to increase drug delivery. In this review, we introduce the physiological and anatomical structures of the nasal cavity, and summarize the possible modes of transport and the relevant receptors and carriers in the nose-to-brain pathway. Additionally, we provide examples of nanotherapeutics developed for intranasal drug delivery to the brain. Further development of nanoparticles that can be applied to intranasal delivery systems promises to improve drug efficacy and reduce drug resistance and adverse effects by increasing molecular access to the brain. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Kunyao Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Suqin Duan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Wenjing Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Qiuhong Ouyang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Qin
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Jinghan Hou
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Onkar A, Khan F, Goenka A, Rajendran RL, Dmello C, Hong CM, Mubin N, Gangadaran P, Ahn BC. Smart Nanoscale Extracellular Vesicles in the Brain: Unveiling their Biology, Diagnostic Potential, and Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6709-6742. [PMID: 38315446 DOI: 10.1021/acsami.3c16839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Information exchange is essential for the brain, where it communicates the physiological and pathological signals to the periphery and vice versa. Extracellular vesicles (EVs) are a heterogeneous group of membrane-bound cellular informants actively transferring informative calls to and from the brain via lipids, proteins, and nucleic acid cargos. In recent years, EVs have also been widely used to understand brain function, given their "cell-like" properties. On the one hand, the presence of neuron and astrocyte-derived EVs in biological fluids have been exploited as biomarkers to understand the mechanisms and progression of multiple neurological disorders; on the other, EVs have been used in designing targeted therapies due to their potential to cross the blood-brain-barrier (BBB). Despite the expanding literature on EVs in the context of central nervous system (CNS) physiology and related disorders, a comprehensive compilation of the existing knowledge still needs to be made available. In the current review, we provide a detailed insight into the multifaceted role of brain-derived extracellular vesicles (BDEVs) in the intricate regulation of brain physiology. Our focus extends to the significance of these EVs in a spectrum of disorders, including brain tumors, neurodegenerative conditions, neuropsychiatric diseases, autoimmune disorders, and others. Throughout the review, parallels are drawn for using EVs as biomarkers for various disorders, evaluating their utility in early detection and monitoring. Additionally, we discuss the promising prospects of utilizing EVs in targeted therapy while acknowledging the existing limitations and challenges associated with their applications in clinical scenarios. A foundational comprehension of the current state-of-the-art in EV research is essential for informing the design of future studies.
Collapse
Affiliation(s)
- Akanksha Onkar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Anshika Goenka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Crismita Dmello
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Nida Mubin
- Department of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
11
|
Ji XY, Guo YX, Wang LB, Wu WC, Wang JQ, He J, Gao R, Rasouli J, Gao MY, Wang ZH, Xiao D, Zhang WF, Ciric B, Zhang Y, Li X. Microglia-derived exosomes modulate myelin regeneration via miR-615-5p/MYRF axis. J Neuroinflammation 2024; 21:29. [PMID: 38246987 PMCID: PMC10801965 DOI: 10.1186/s12974-024-03019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Demyelination and failure of remyelination in the central nervous system (CNS) characterize a number of neurological disorders. Spontaneous remyelination in demyelinating diseases is limited, as oligodendrocyte precursor cells (OPCs), which are often present in demyelinated lesions in abundance, mostly fail to differentiate into oligodendrocytes, the myelinating cells in the CNS. In addition to OPCs, the lesions are assembled numbers of activated resident microglia/infiltrated macrophages; however, the mechanisms and potential role of interactions between the microglia/macrophages and OPCs are poorly understood. Here, we generated a transcriptional profile of exosomes from activated microglia, and found that miR-615-5p was elevated. miR-615-5p bound to 3'UTR of myelin regulator factor (MYRF), a crucial myelination transcription factor expressed in oligodendrocyte lineage cells. Mechanistically, exosomes from activated microglia transferred miR-615-5p to OPCs, which directly bound to MYRF and inhibited OPC maturation. Furthermore, an effect of AAV expressing miR-615-5p sponge in microglia was tested in experimental autoimmune encephalomyelitis (EAE) and cuprizone (CPZ)-induced demyelination model, the classical mouse models of multiple sclerosis. miR-615-5p sponge effectively alleviated disease progression and promoted remyelination. This study identifies miR-615-5p/MYRF as a new target for the therapy of demyelinating diseases.
Collapse
Affiliation(s)
- Xiao-Yu Ji
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yu-Xin Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Li-Bin Wang
- The Nervous System Disease Diagnosis and Treatment Engineering Technology Research Center of Ningxia, Yinchuan, 750001, China
| | - Wen-Cheng Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Jia-Qi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Jin He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Rui Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Javad Rasouli
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Meng-Yuan Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Zhen-Hai Wang
- The Nervous System Disease Diagnosis and Treatment Engineering Technology Research Center of Ningxia, Yinchuan, 750001, China
| | - Dan Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Wei-Feng Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|
12
|
Sun L, Chen Y, Xia L, Wang J, Zhu J, Li J, Wang K, Shen K, Zhang D, Zhang G, Shi T, Chen W. TRIM69 suppressed the anoikis resistance and metastasis of gastric cancer through ubiquitin‒proteasome-mediated degradation of PRKCD. Oncogene 2023; 42:3619-3632. [PMID: 37864033 DOI: 10.1038/s41388-023-02873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
The tripartite motif (TRIM) protein family has been investigated in multiple human cancers, including gastric cancer (GC). However, the role of TRIM69 in the anoikis resistance and metastasis of GC cells remains to be elucidated. We identified the differentially expressed genes in anoikis-resistant GC cells using RNA-sequencing analysis. The interaction between TRIM69 and PRKCD was analyzed by coimmunoprecipitation and mass spectrometry. Our results have shown that TRIM69 was significantly downregulated in anoikis-resistant GC cells. TRIM69 overexpression markedly suppressed the anoikis resistance and metastasis of GC cells in vitro and in vivo. TRIM69 knockdown had the opposite effects. Mechanistically, TRIM69 interacted with PRKCD through its B-box domain and catalyzed the K48-linked polyubiquitination of PRKCD. Moreover, TRIM69 inhibited BDNF production in a PRKCD-dependent manner. Importantly, overexpression of PRKCD or BDNF blocked the effects of TRIM69 on the anoikis resistance and metastasis of GC cells. Interestingly, a TRIM69-PRKCD+BDNF+ cell subset was positively associated with metastasis in GC patients. TRIM69-mediated suppression of the anoikis resistance and metastasis of GC cells via modulation of the PRKCD/BDNF axis, with potential implications for novel therapeutic approaches for metastatic GC.
Collapse
Affiliation(s)
- Linqing Sun
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Xia
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongze Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
13
|
Mwema A, Muccioli GG, des Rieux A. Innovative drug delivery strategies to the CNS for the treatment of multiple sclerosis. J Control Release 2023; 364:435-457. [PMID: 37926243 DOI: 10.1016/j.jconrel.2023.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Disorders of the central nervous system (CNS), such as multiple sclerosis (MS) represent a great emotional, financial and social burden. Despite intense efforts, great unmet medical needs remain in that field. MS is an autoimmune, chronic inflammatory demyelinating disease with no curative treatment up to date. The current therapies mostly act in the periphery and seek to modulate aberrant immune responses as well as slow down the progression of the disease. Some of these therapies are associated with adverse effects related partly to their administration route and show some limitations due to their rapid clearance and inability to reach the CNS. The scientific community have recently focused their research on developing MS therapies targeting different processes within the CNS. However, delivery of therapeutics to the CNS is mainly limited by the presence of the blood-brain barrier (BBB). Therefore, there is a pressing need to develop new drug delivery strategies that ensure CNS availability to capitalize on identified therapeutic targets. Several approaches have been developed to overcome or bypass the BBB and increase delivery of therapeutics to the CNS. Among these strategies, the use of alternative routes of administration, such as the nose-to-brain (N2B) pathway, offers a promising non-invasive option in the scope of MS, as it would allow a direct transport of the drugs from the nasal cavity to the brain. Moreover, the combination of bioactive molecules within nanocarriers bring forth new opportunities for MS therapies, allowing and/or increasing their transport to the CNS. Here we will review and discuss these alternative administration routes as well as the nanocarrier approaches useful to deliver drugs for MS.
Collapse
Affiliation(s)
- Ariane Mwema
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium; Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 72, 1200 Brussels, Belgium
| | - Giulio G Muccioli
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 72, 1200 Brussels, Belgium.
| | - Anne des Rieux
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium.
| |
Collapse
|
14
|
Cheng W, Xu C, Su Y, Shen Y, Yang Q, Zhao Y, Zhao Y, Liu Y. Engineered Extracellular Vesicles: A potential treatment for regeneration. iScience 2023; 26:108282. [PMID: 38026170 PMCID: PMC10651684 DOI: 10.1016/j.isci.2023.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Extracellular vesicles (EVs) play a critical role in various physiological and pathological processes. EVs have gained recognition in regenerative medicine due to their biocompatibility and low immunogenicity. However, the practical application of EVs faces challenges such as limited targeting ability, low yield, and inadequate therapeutic effects. To overcome these limitations, engineered EVs have emerged. This review aims to comprehensively analyze the engineering methods utilized for modifying donor cells and EVs, with a focus on comparing the therapeutic potential between engineered and natural EVs. Additionally, it aims to investigate the specific cell effects that play a crucial role in promoting repair and regeneration, while also exploring the underlying mechanisms involved in the field of regenerative medicine.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Chenyu Xu
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yuran Su
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Youqing Shen
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Qiang Yang
- Department of Orthopedics, Tianjin University Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Yanhong Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yue Liu
- Department of Orthopedics, Tianjin University Tianjin Hospital, Tianjin University, Tianjin 300211, China
| |
Collapse
|
15
|
Shen W, You T, Xu W, Xie Y, Wang Y, Cui M. Rapid and Widespread Distribution of Intranasal Small Extracellular Vesicles Derived from Mesenchymal Stem Cells throughout the Brain Potentially via the Perivascular Pathway. Pharmaceutics 2023; 15:2578. [PMID: 38004556 PMCID: PMC10675165 DOI: 10.3390/pharmaceutics15112578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Intranasal administration is a promising strategy to enhance the delivery of the sEVsomes-based drug delivery system to the central nervous system (CNS). This study aimed to explore central distributive characteristics of mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) and underlying pathways. Here, we observed that intranasal MSC-sEVs were rapidly distributed to various brain regions, especially in the subcortex distant from the olfactory bulb, and were absorbed by multiple cells residing in these regions. We captured earlier transportation of intranasal MSC-sEVs into the perivascular space and found an increase in cerebrospinal fluid influx after intranasal administration, particularly in subcortical structures of anterior brain regions where intranasal sEVs were distributed more significantly. These results suggest that the perivascular pathway may underlie the rapid and widespread central delivery kinetics of intranasal MSC-sEVs and support the potential of the intranasal route to deliver MSC-sEVs to the brain for CNS therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China; (W.S.); (T.Y.); (W.X.); (Y.X.); (Y.W.)
| |
Collapse
|
16
|
Mori T, Giovannelli L, Bilia AR, Margheri F. Exosomes: Potential Next-Generation Nanocarriers for the Therapy of Inflammatory Diseases. Pharmaceutics 2023; 15:2276. [PMID: 37765245 PMCID: PMC10537720 DOI: 10.3390/pharmaceutics15092276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Inflammatory diseases are common pathological processes caused by various acute and chronic factors, and some of them are autoimmune diseases. Exosomes are fundamental extracellular vesicles secreted by almost all cells, which contain a series of constituents, i.e., cytoskeletal and cytosolic proteins (actin, tubulin, and histones), nucleic acids (mRNA, miRNA, and DNA), lipids (diacylglycerophosphates, cholesterol, sphingomyelin, and ceramide), and other bioactive components (cytokines, signal transduction proteins, enzymes, antigen presentation and membrane transport/fusion molecules, and adhesion molecules). This review will be a synopsis of the knowledge on the contribution of exosomes from different cell sources as possible therapeutic agents against inflammation, focusing on several inflammatory diseases, neurological diseases, rheumatoid arthritis and osteoarthritis, intestinal bowel disease, asthma, and liver and kidney injuries. Current knowledge indicates that the role of exosomes in the therapy of inflammation and in inflammatory diseases could be distinctive. The main limitations to their clinical translation are still production, isolation, and storage. Additionally, there is an urgent need to personalize the treatments in terms of the selection of exosomes; their dosages and routes of administration; and a deeper knowledge about their biodistribution, type and incidence of adverse events, and long-term effects of exosomes. In conclusion, exosomes can be a very promising next-generation therapeutic option, superior to synthetic nanocarriers and cell therapy, and can represent a new strategy of effective, safe, versatile, and selective delivery systems in the future.
Collapse
Affiliation(s)
- Tosca Mori
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy;
| | - Lisa Giovannelli
- Department of Neurosciences (Department of Neurosciences, Psychology, Drug Research and Child Health), University of Florence, 50139 Florence, Italy
| | - Anna Rita Bilia
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy;
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50121 Florence, Italy;
| |
Collapse
|
17
|
Wang J, Yang L. The role of exosomes in central nervous system tissue regeneration and repair. Biomed Mater 2023; 18:052003. [PMID: 37399812 DOI: 10.1088/1748-605x/ace39c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Exosomes are membrane-bound vesicles secreted by various cell types into the extracellular environment and contain kinds of bioactive molecules. These molecules can mediate various biological processes such as cell differentiation, proliferation, and survival, making them attractive for tissue regeneration and repair. Owing to their nanoscale size, bilayer membrane structure, and receptor-mediated transcytosis, exosomes can cross the blood-brain barrier (BBB) and reach the central nervous system (CNS) tissue. Additionally, exosomes can be loaded with exogenous substances after isolation. It has been suggested that exosomes could be used as natural drug carriers to transport therapeutic agents across the BBB and have great potential for CNS disease therapy by promoting tissue regeneration and repair. Herein, we discuss perspectives on therapeutic strategies to treat neurodegenerative disease or spinal cord injury using a variety of cell types-derived exosomes with kinds of exosomal contents, as well as engineering strategies of specific functional and exosome administration routes.
Collapse
Affiliation(s)
- Jingtao Wang
- Guangzhou Xinhua University, No.19 Huamei Road, Guangzhou, Guangdong 510520, People's Republic of China
| | - Lingyan Yang
- Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, Guangdong 510005, People's Republic of China
| |
Collapse
|
18
|
Mohammadi AH, Ghazvinian Z, Bagheri F, Harada M, Baghaei K. Modification of Extracellular Vesicle Surfaces: An Approach for Targeted Drug Delivery. BioDrugs 2023; 37:353-374. [PMID: 37093521 DOI: 10.1007/s40259-023-00595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/25/2023]
Abstract
Extracellular vesicles (EVs) are a promising drug delivery vehicle candidate because of their natural origin and intrinsic function of transporting various molecules between different cells. Several advantages of the EV delivery platform include enhanced permeability and retention effect, efficient interaction with recipient cells, the ability to traverse biological barriers, high biocompatibility, high biodegradability, and low immunogenicity. Furthermore, EV membranes share approximately similar structures and contents to the cell membrane, which allows surface modification of EVs, an approach to enable specific targeting. Enhanced drug accumulation in intended sites and reduced adverse effects of chemotherapeutic drugs are the most prominent effects of targeted drug delivery. In order to improve the targeting ability of EVs, chemical modification and genetic engineering are the most adopted methods to date. Diverse chemical methods are employed to decorate EV surfaces with various ligands such as aptamers, carbohydrates, peptides, vitamins, and antibodies. In this review, we introduce the biogenesis, content, and cellular pathway of natural EVs and further discuss the genetic modification of EVs, and its challenges. Furthermore, we provide a comprehensive deliberation on the various chemical modification methods for improved drug delivery, which are directly related to increasing the therapeutic index.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Ghazvinian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Fang Y, Ni J, Wang YS, Zhao Y, Jiang LQ, Chen C, Zhang RD, Fang X, Wang P, Pan HF. Exosomes as biomarkers and therapeutic delivery for autoimmune diseases: Opportunities and challenges. Autoimmun Rev 2023; 22:103260. [PMID: 36565798 DOI: 10.1016/j.autrev.2022.103260] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Exosomes are spherical lipid bilayer vesicles composed of lipids, proteins and nucleic acids that deliver signaling molecules through a vesicular transport system to regulate the function and morphology of target cells, thereby involving in a variety of biological processes, such as cell apoptosis or proliferation, and cytokine production. In the past decades, there are emerging evidence that exosomes play pivotal roles in the pathological mechanisms of several autoimmune diseases (ADs), including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes mellitus (T1DM), Sjogren's syndrome (SS), multiple sclerosis (MS), inflammatory bowel disease (IBD). systemic sclerosis (SSc), etc. Several publications have shown that exosomes are involved in the pathogenesis of ADs mainly through intercellular communication and by influencing the response of immune cells. The level of exosomes and the expression of nucleic acids can reflect the degree of disease progression and are excellent biomarkers for ADs. In addition, exosomes have the potential to be used as drug carriers thanks to their biocompatibility and stability. In this review, we briefly summarized the current researches regarding the biological functions of exosomes in ADs, and provided an insight into the potential of exosomes as biomarkers and therapeutic delivery for these diseases.
Collapse
Affiliation(s)
- Yang Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Yun-Sheng Wang
- Department of Endocrinology, the Second People's Hospital of Hefei, the Affiliated Hefei Hospital of Anhui Medical University, Hefei 230011, Anhui, China
| | - Yan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Ling-Qiong Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Cong Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Ruo-Di Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Xi Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Peng Wang
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China; Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China.
| |
Collapse
|
20
|
Marcello E, Chiono V. Biomaterials-Enhanced Intranasal Delivery of Drugs as a Direct Route for Brain Targeting. Int J Mol Sci 2023; 24:ijms24043390. [PMID: 36834804 PMCID: PMC9964911 DOI: 10.3390/ijms24043390] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Intranasal (IN) drug delivery is a non-invasive and effective route for the administration of drugs to the brain at pharmacologically relevant concentrations, bypassing the blood-brain barrier (BBB) and minimizing adverse side effects. IN drug delivery can be particularly promising for the treatment of neurodegenerative diseases. The drug delivery mechanism involves the initial drug penetration through the nasal epithelial barrier, followed by drug diffusion in the perivascular or perineural spaces along the olfactory or trigeminal nerves, and final extracellular diffusion throughout the brain. A part of the drug may be lost by drainage through the lymphatic system, while a part may even enter the systemic circulation and reach the brain by crossing the BBB. Alternatively, drugs can be directly transported to the brain by axons of the olfactory nerve. To improve the effectiveness of drug delivery to the brain by the IN route, various types of nanocarriers and hydrogels and their combinations have been proposed. This review paper analyzes the main biomaterials-based strategies to enhance IN drug delivery to the brain, outlining unsolved challenges and proposing ways to address them.
Collapse
Affiliation(s)
- Elena Marcello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research, Centro 3R, 56122 Pisa, Italy
- Institute for Chemical-Physical Processes, National Research Council (CNR-IPCF), 56124 Pisa, Italy
- Correspondence:
| |
Collapse
|