1
|
Gonnelli A, Sarogni P, Giannini N, Linsalata S, Di Martino F, Zamborlin A, Frusca V, Ermini ML, Puccini P, Voliani V, Paiar F. A bioconvergence study on platinum-free concurrent chemoradiotherapy for the treatment of HPV-negative head and neck carcinoma. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:122-129. [PMID: 38315518 DOI: 10.1080/21691401.2024.2309233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024]
Abstract
Locally advanced head and neck squamous cell carcinoma (LA-HNSCC) is characterized by high rate of recurrence, resulting in a poor survival. Standard treatments are associated with significant toxicities that impact the patient's quality of life, highlighting the urgent need for novel therapies to improve patient outcomes. On this regard, noble metal nanoparticles (NPs) are emerging as promising agents as both drug carriers and radiosensitizers. On the other hand, co-treatments based on NPs are still at the preclinical stage because of the associated metal-persistence.In this bioconvergence study, we introduce a novel strategy to exploit tumour chorioallantoic membrane models (CAMs) in radio-investigations within clinical equipment and evaluate the performance of non-persistent nanoarchitectures (NAs) in combination with radiotherapy with respect to the standard concurrent chemoradiotherapy for the treatment of HPV-negative HNSCCs. A comparable effect has been observed between the tested approaches, suggesting NAs as a potential platinum-free agent in concurrent chemoradiotherapy for HNSCCs. On a broader basis, our bioconvergence approach provides an advance for the translation of Pt-free radiosensitizer to the clinical practice, positively shifting the therapeutic vs. side effects equilibrium for the management of HNSCCs.
Collapse
Affiliation(s)
- Alessandra Gonnelli
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | - Noemi Giannini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Stefania Linsalata
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Fabio Di Martino
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Agata Zamborlin
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
- NEST-Scuola Normale Superiore, Pisa, Italy
| | - Valentina Frusca
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
- Scuola Superiore Sant'Anna, Pisa, Italy
| | - Maria Laura Ermini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | - Paola Puccini
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Fabiola Paiar
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| |
Collapse
|
2
|
Sarogni P, Frusca V, Zamborlin A, Giannini N, Menicagli M, Brancato L, Linsalata S, Di Martino F, Gonnelli A, Paiar F, Van den Bossche J, Bogers J, Voliani V. Neoadjuvant Hyperthermia Combined with Hybrid Nanoarchitectures Enhances Chemoradiotherapy Efficacy in Head and Neck Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43272-43282. [PMID: 39126693 DOI: 10.1021/acsami.4c07393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Head and neck squamous cell carcinomas are characterized by a high incidence of recurrence, especially in patients with locally advanced disease. Standard treatment strategies can be associated with severe side effects to healthy tissues that can negatively impact the patient's quality of life. Hyperthermia (HT) is a noninvasive treatment modality that has improved the effectiveness of chemotherapy (CT) and/or radiotherapy (RT) for the management of some solid neoplasms. In this context, the association of this approach with rationally designed nanomaterials may further enhance the treatment outcome. In this study, we demonstrate the enhanced effect of neoadjuvant HT in combination with hybrid nanoarchitectures enclosing a cisplatin prodrug (NAs-CisPt) and RT. All the treatments and their combinations have been fully evaluated by employing standardized chorioallantoic membrane tumor models of HPV-negative head and neck carcinoma. An improved tumor-shrinking effect was observed by the administration of the trimodal treatment (HT/NAs-CisPt/RT), which also highlighted a significant increase in apoptosis. Our findings demonstrate that the combination of HT with nanotechnology-based CT and RT in a certain order enhances the in vivo treatment outcome. On a broader basis, this study paves the way for the next exploration of noninvasive treatment approaches for the clinical management of oral cancer based on innovative strategies.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Valentina Frusca
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Agata Zamborlin
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST-Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Noemi Giannini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | - Michele Menicagli
- Fondazione Pisana per la Scienza ONLUS, via Ferruccio Giovannini 13, S. Giuliano Terme, 56017 Pisa, Italy
| | | | - Stefania Linsalata
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | - Fabio Di Martino
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | - Alessandra Gonnelli
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | - Fabiola Paiar
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | | | - Johannes Bogers
- ElmediX NV, Esperantolaan 4, 3001 Heverlee, Belgium
- Laboratory of Cell Biology and Histology, University of Antwerp, 2610 Antwerp, Belgium
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| |
Collapse
|
3
|
Gonnelli A, Gerbé de Thoré M, Ermini ML, Frusca V, Zamborlin A, Signolle N, Bawa O, Clémenson C, Meziani L, Bergeron P, El-Azrak I, Sarogni P, Mugnaioli E, Giannini N, Drava G, Deutsch E, Paiar F, Mondini M, Voliani V. Nonpersistent Nanoarchitectures Enhance Concurrent Chemoradiotherapy in an Immunocompetent Orthotopic Model of HPV+ Head/Neck Carcinoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400949. [PMID: 38761135 DOI: 10.1002/adma.202400949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Cisplatin chemoradiotherapy (CRT) is the established standard of care for managing locally advanced human papillomavirus-positive head/neck carcinoma. The typically young patients may suffer serious and long-time side effects caused by the treatment, such as dysphagia, and hearing loss. Thus, ensuring a satisfactory post-treatment quality of life is paramount. One potential replacing approach to the classical CRT involves the combination of standard-dose radiotherapy and radiosensitizers such as noble metal nanoparticles (NPs). However, several concerns about size, shape, and biocompatibility limit the translation of metal nanomaterials to the clinical practice. Here, it is demonstrated that a new model of nonpersistent gold nanoarchitectures containing cisplatin (NAs-Cluster-CisPt) generates, in combination with radiotherapy, a significant in vivo tumor-reducing effect compared to the standard CRT, achieving a complete tumor clearance in 25% of the immunocompetent models that persist for 60 days. These findings, together with the negligible amount of metals recognized in the excretory organs, highlight that the concurrent administration of NAs-Cluster-CisPt and radiotherapy has the potential to overcome some clinical limitations associated to NP-based approaches while enhancing the treatment outcome with respect to standard CRT. Overall, despite further mechanistic investigations being essential, these data support the exploiting of nonpersistent metal-nanomaterial-mediated approaches for oral cancer management.
Collapse
Affiliation(s)
- Alessandra Gonnelli
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, Pisa, 56126, Italy
| | - Marine Gerbé de Thoré
- Gustave Roussy, INSERM U1030 Molecular Radiotherapy and Therapeutic Innovation, Université Paris Saclay, 114, rue Edouard Vaillant, Villejuif Cedex, 94805, France
| | - Maria Laura Ermini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Valentina Frusca
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Agata Zamborlin
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- NEST-Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Nicolas Signolle
- Gustave Roussy, Plateforme de pathologie expérimentale et translationnelle, UMS AMMICA, 114, rue Edouard Vaillant, Villejuif Cedex, 94805, France
| | - Olivia Bawa
- Gustave Roussy, Plateforme de pathologie expérimentale et translationnelle, UMS AMMICA, 114, rue Edouard Vaillant, Villejuif Cedex, 94805, France
| | - Céline Clémenson
- Gustave Roussy, INSERM U1030 Molecular Radiotherapy and Therapeutic Innovation, Université Paris Saclay, 114, rue Edouard Vaillant, Villejuif Cedex, 94805, France
| | - Lydia Meziani
- Gustave Roussy, INSERM U1030 Molecular Radiotherapy and Therapeutic Innovation, Université Paris Saclay, 114, rue Edouard Vaillant, Villejuif Cedex, 94805, France
| | - Paul Bergeron
- Gustave Roussy, INSERM U1030 Molecular Radiotherapy and Therapeutic Innovation, Université Paris Saclay, 114, rue Edouard Vaillant, Villejuif Cedex, 94805, France
| | - Ismail El-Azrak
- Gustave Roussy, INSERM U1030 Molecular Radiotherapy and Therapeutic Innovation, Université Paris Saclay, 114, rue Edouard Vaillant, Villejuif Cedex, 94805, France
| | - Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Enrico Mugnaioli
- Department of Earth Sciences, University of Pisa, Via S. Maria 53, Pisa, 56126, Italy
| | - Noemi Giannini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, Pisa, 56126, Italy
| | - Giuliana Drava
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, Genoa, 16148, Italy
| | - Eric Deutsch
- Gustave Roussy, INSERM U1030 Molecular Radiotherapy and Therapeutic Innovation, Université Paris Saclay, 114, rue Edouard Vaillant, Villejuif Cedex, 94805, France
| | - Fabiola Paiar
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, Pisa, 56126, Italy
| | - Michele Mondini
- Gustave Roussy, INSERM U1030 Molecular Radiotherapy and Therapeutic Innovation, Université Paris Saclay, 114, rue Edouard Vaillant, Villejuif Cedex, 94805, France
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, Genoa, 16148, Italy
| |
Collapse
|
4
|
Sarogni P, Brindani N, Zamborlin A, Gonnelli A, Menicagli M, Mapanao AK, Munafò F, De Vivo M, Voliani V. Tumor growth-arrest effect of tetrahydroquinazoline-derivative human topoisomerase II-alpha inhibitor in HPV-negative head and neck squamous cell carcinoma. Sci Rep 2024; 14:9150. [PMID: 38644364 PMCID: PMC11033276 DOI: 10.1038/s41598-024-59592-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/12/2024] [Indexed: 04/23/2024] Open
Abstract
Oral malignancies continue to have severe morbidity with less than 50% long-term survival despite the advancement in the available therapies. There is a persisting demand for new approaches to establish more efficient strategies for their treatment. In this regard, the human topoisomerase II (topoII) enzyme is a validated chemotherapeutics target, as topoII regulates vital cellular processes such as DNA replication, transcription, recombination, and chromosome segregation in cells. TopoII inhibitors are currently used to treat some neoplasms such as breast and small cells lung carcinomas. Additionally, topoII inhibitors are under investigation for the treatment of other cancer types, including oral cancer. Here, we report the therapeutic effect of a tetrahydroquinazoline derivative (named ARN21934) that preferentially inhibits the alpha isoform of human topoII. The treatment efficacy of ARN21934 has been evaluated in 2D cell cultures, 3D in vitro systems, and in chick chorioallantoic membrane cancer models. Overall, this work paves the way for further preclinical developments of ARN21934 and possibly other topoII alpha inhibitors of this promising chemical class as a new chemotherapeutic approach for the treatment of oral neoplasms.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56126, Pisa, Italy
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genoa, Italy
| | - Nicoletta Brindani
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genoa, Italy
| | - Agata Zamborlin
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56126, Pisa, Italy
- NEST - Scuola Normale Superiore, Piazza San Silvestro, 12, 56126, Pisa, Italy
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Alessandra Gonnelli
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56126, Pisa, Italy
- Department of Translational Medicine, University of Pisa, 56126, Pisa, Italy
| | - Michele Menicagli
- Fondazione Pisana per la Scienza ONLUS, via Ferruccio Giovannini, 13, 56017, S. Giuliano Terme, Italy
| | - Ana Katrina Mapanao
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
| | - Federico Munafò
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genoa, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genoa, Italy.
| | - Valerio Voliani
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56126, Pisa, Italy.
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.
| |
Collapse
|
5
|
Zhang Y, Wu Y, Du H, Li Z, Bai X, Wu Y, Li H, Zhou M, Cao Y, Chen X. Nano-Drug Delivery Systems in Oral Cancer Therapy: Recent Developments and Prospective. Pharmaceutics 2023; 16:7. [PMID: 38276483 PMCID: PMC10820767 DOI: 10.3390/pharmaceutics16010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/16/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Oral cancer (OC), characterized by malignant tumors in the mouth, is one of the most prevalent malignancies worldwide. Chemotherapy is a commonly used treatment for OC; however, it often leads to severe side effects on human bodies. In recent years, nanotechnology has emerged as a promising solution for managing OC using nanomaterials and nanoparticles (NPs). Nano-drug delivery systems (nano-DDSs) that employ various NPs as nanocarriers have been extensively developed to enhance current OC therapies by achieving controlled drug release and targeted drug delivery. Through searching and analyzing relevant research literature, it was found that certain nano-DDSs can improve the therapeutic effect of drugs by enhancing drug accumulation in tumor tissues. Furthermore, they can achieve targeted delivery and controlled release of drugs through adjustments in particle size, surface functionalization, and drug encapsulation technology of nano-DDSs. The application of nano-DDSs provides a new tool and strategy for OC therapy, offering personalized treatment options for OC patients by enhancing drug delivery, reducing toxic side effects, and improving therapeutic outcomes. However, the use of nano-DDSs in OC therapy still faces challenges such as toxicity, precise targeting, biodegradability, and satisfying drug-release kinetics. Overall, this review evaluates the potential and limitations of different nano-DDSs in OC therapy, focusing on their components, mechanisms of action, and laboratory therapeutic effects, aiming to provide insights into understanding, designing, and developing more effective and safer nano-DDSs. Future studies should focus on addressing these issues to further advance the application and development of nano-DDSs in OC therapy.
Collapse
Affiliation(s)
- Yun Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Yongjia Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Hongjiang Du
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China;
| | - Zhiyong Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Xiaofeng Bai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Yange Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Huimin Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Mengqi Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Yifeng Cao
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| |
Collapse
|
6
|
Cazzoli R, Zamborlin A, Ermini ML, Salerno A, Curcio M, Nicoletta FP, Iemma F, Vittorio O, Voliani V, Cirillo G. Evolving approaches in glioma treatment: harnessing the potential of copper metabolism modulation. RSC Adv 2023; 13:34045-34056. [PMID: 38020008 PMCID: PMC10661684 DOI: 10.1039/d3ra06434d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
The key properties and high versatility of metal nanoparticles have shed new perspectives on cancer therapy, with copper nanoparticles gaining great interest because of the ability to couple the intrinsic properties of metal nanoparticles with the biological activities of copper ions in cancer cells. Copper, indeed, is a cofactor involved in different metabolic pathways of many physiological and pathological processes. Literature data report on the use of copper in preclinical protocols for cancer treatment based on chemo-, photothermal-, or copper chelating-therapies. Copper nanoparticles exhibit anticancer activity via multiple routes, mainly involving the targeting of mitochondria, the modulation of oxidative stress, the induction of apoptosis and autophagy, and the modulation of immune response. Moreover, compared to other metal nanoparticles (e.g. gold, silver, palladium, and platinum), copper nanoparticles are rapidly cleared from organs with low systemic toxicity and benefit from the copper's low cost and wide availability. Within this review, we aim to explore the impact of copper in cancer research, focusing on glioma, the most common primary brain tumour. Glioma accounts for about 80% of all malignant brain tumours and shows a poor prognosis with the five-year survival rate being less than 5%. After introducing the glioma pathogenesis and the limitation of current therapeutic strategies, we will discuss the potential impact of copper therapy and present the key results of the most relevant literature to establish a reliable foundation for future development of copper-based approaches.
Collapse
Affiliation(s)
- Riccardo Cazzoli
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales Sydney NSW Australia
| | - Agata Zamborlin
- NEST-Scuola Normale Superiore Piazza San Silvestro 12 - 56127 Pisa Italy
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
| | - Maria Laura Ermini
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
| | - Antonietta Salerno
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales Sydney NSW Australia
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| | - Orazio Vittorio
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales Sydney NSW Australia
- School of Biomedical Sciences, University of New South Wales Sydney NSW Australia
| | - Valerio Voliani
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa Viale Cembrano 4 - 16148 Genoa Italy
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| |
Collapse
|
7
|
Sarogni P, Zamborlin A, Mapanao AK, Logghe T, Brancato L, van Zwol E, Menicagli M, Giannini N, Gonnelli A, Linsalata S, Colenbier R, Van den Bossche J, Paiar F, Bogers J, Voliani V. Hyperthermia Reduces Irradiation-Induced Tumor Repopulation in an In Vivo Pancreatic Carcinoma Model. Adv Biol (Weinh) 2023; 7:e2200229. [PMID: 36861331 DOI: 10.1002/adbi.202200229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/19/2022] [Indexed: 03/03/2023]
Abstract
Pancreatic cancer has a poor prognosis due to its aggressive nature and ability to metastasize at an early stage. Currently, its management is still a challenge because this neoplasm is resistant to conventional treatment approaches, among which is chemo-radiotherapy (CRT), due to the abundant stromal compartment involved in the mechanism of hypoxia. Hyperthermia, among other effects, counteracts hypoxia by promoting blood perfusion and thereby can enhance the therapeutic effect of radiotherapy (RT). Therefore, the establishment of integrated treatments would be a promising strategy for the management of pancreatic carcinoma. Here, the effects of joint radiotherapy/hyperthermia (RT/HT) on optimized chick embryo chorioallantoic membrane (CAM) pancreatic tumor models are investigated. This model enables a thorough assessment of the tumor-arresting effect of the combined approach as well as the quantitative evaluation of hypoxia and cell cycle-associated mechanisms by both gene expression analysis and histology. The analysis of the lower CAM allows to investigate the variation of the metastatic behaviors of the cancer cells associated with the treatments. Overall, this study provides a potentially effective combined strategy for the non-invasive management of pancreatic carcinoma.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Agata Zamborlin
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- NEST-Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Ana Katrina Mapanao
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen-PSI, Forschungsstrasse, Switzerland
| | - Tine Logghe
- ElmediX NV, Dellingstraat 34-1, Mechelen, 2800, Belgium
| | | | - Eke van Zwol
- ElmediX NV, Dellingstraat 34-1, Mechelen, 2800, Belgium
| | - Michele Menicagli
- Fondazione Pisana per la Scienza ONLUS, via Ferruccio Giovannini 13, S. Giuliano Terme, Pisa, 56017, Italy
| | - Noemi Giannini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126, Pisa, Italy
| | - Alessandra Gonnelli
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126, Pisa, Italy
| | - Stefania Linsalata
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, 56126, Italy
| | - Robin Colenbier
- University of Antwerp, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerpen, 2610, Belgium
| | | | - Fabiola Paiar
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126, Pisa, Italy
| | - Johannes Bogers
- ElmediX NV, Dellingstraat 34-1, Mechelen, 2800, Belgium
- University of Antwerp, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerpen, 2610, Belgium
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4, Genoa, 16148, Italy
| |
Collapse
|
8
|
Todaro B, Ottalagana E, Luin S, Santi M. Targeting Peptides: The New Generation of Targeted Drug Delivery Systems. Pharmaceutics 2023; 15:1648. [PMID: 37376097 DOI: 10.3390/pharmaceutics15061648] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Peptides can act as targeting molecules, analogously to oligonucleotide aptamers and antibodies. They are particularly efficient in terms of production and stability in physiological environments; in recent years, they have been increasingly studied as targeting agents for several diseases, from tumors to central nervous system disorders, also thanks to the ability of some of them to cross the blood-brain barrier. In this review, we will describe the techniques employed for their experimental and in silico design, as well as their possible applications. We will also discuss advancements in their formulation and chemical modifications that make them even more stable and effective. Finally, we will discuss how their use could effectively help to overcome various physiological problems and improve existing treatments.
Collapse
Affiliation(s)
- Biagio Todaro
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Elisa Ottalagana
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, 56017 Pisa, Italy
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Melissa Santi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
9
|
Zamborlin A, Voliani V. Gold nanoparticles as antiangiogenic and antimetastatic agents. Drug Discov Today 2023; 28:103438. [PMID: 36375738 DOI: 10.1016/j.drudis.2022.103438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Angiogenesis and metastasis are two interdependent cancer hallmarks, the latter of which is the key cause of treatment failure. Thus, establishing effective antiangiogenesis/antimetastasis agents is the final frontier in cancer research. Gold nanoparticles (GNPs) may provide disruptive advancements in this regard due to their intrinsic physical and physiological features. Here, we comprehensively discuss recent potential therapeutical strategies to treat angiogenesis and metastasis and present a critical review on the state-of-the-art in vitro and in vivo evaluations of the antiangiogenic/antimetastatic activity of GNPs. Finally, we provide perspectives on the contribution of GNPs to the advancement of cancer management.
Collapse
Affiliation(s)
- Agata Zamborlin
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12 - 56127 Pisa, Italy; NEST-Scuola Normale Superiore, Piazza San Silvestro, 12 - 56127 Pisa, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12 - 56127 Pisa, Italy; Department of Pharmacy, University of Genoa, Viale Cembrano, 4 - 16148 Genoa, Italy.
| |
Collapse
|
10
|
Santi M, Frusca V, Ermini ML, Mapanao AK, Sarogni P, Gonnelli A, Giannini N, Zamborlin A, Biancalana L, Marchetti F, Voliani V. Hybrid nano-architectures loaded with metal complexes for the co-chemotherapy of head and neck carcinomas. J Mater Chem B 2023; 11:325-334. [PMID: 36484416 DOI: 10.1039/d2tb01930b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are a complex group of malignancies that affect different body sites pertaining to the oral cavity, pharynx and larynx. Current chemotherapy relies on platinum complexes, the major exponent being cisplatin, which exert severe side effects that can negatively affect prognosis. For this reason, other metal complexes with less severe side effects are being investigated as alternatives or adjuvants to platinum complexes. In this context, exploiting (supra)additive effects by the concurrent administration of cisplatin and emerging metal complexes is a promising research strategy that may lead to effective cancer management with reduced adverse reactions. Here, the combined action of cisplatin and a ruthenium(II) η6-arene compound (RuCy), both as free molecules and loaded into hybrid nano-architectures (NAs), has been assessed on HPV-negative HNSCC models of increasing complexity: 2D cell cultures, 3D multicellular tumor spheroids, and chorioallantoic membranes (CAMs). Two new NAs have been established to explore all the delivery combinations and compare their ability to enhance the efficacy of cisplatin in the treatment of HNSCCs. A significant supra-additive effect has been observed in both 2D and 3D models by one combination of treatments, suggesting that cisplatin is particularly effective when loaded on NAs, whereas RuCy performs better when administered as a free compound. Overall, this work paves the way for the establishment of the next co-chemotherapeutic approaches for the management of HNSCCs.
Collapse
Affiliation(s)
- Melissa Santi
- NEST Istituto Nanoscienze-CNR and Scuola Normale Superiore, 56127, Pisa, Italy
| | - Valentina Frusca
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Maria Laura Ermini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Ana Katrina Mapanao
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Alessandra Gonnelli
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy.,Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, Pisa, Italy
| | - Noemi Giannini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy.,Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, Pisa, Italy
| | - Agata Zamborlin
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy.,NEST-Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy.,Department of Pharmacy, University of Genoa, Viale Cembrano, 4-16148, Genoa, Italy.
| |
Collapse
|