1
|
Gan Y, He J, Gong Y, Wu Z, Liang D, Shen G, Ren H, Jiang X, Cheng Z. Baicalein-loaded porous silk fibroin microspheres modulate the senescence of nucleus pulposus cells through the NF-κB signaling pathway. Colloids Surf B Biointerfaces 2025; 249:114537. [PMID: 39879672 DOI: 10.1016/j.colsurfb.2025.114537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Intervertebral disc degeneration (IVDD), an age-associated degenerative condition, significantly contributes to low back pain, thereby adversely affecting individual health and quality of life, while also imposing a substantial societal burden. Baicalein, a natural flavonoid derived from Scutellaria baicalensis Georgi, demonstrates a range of pharmacological activities, including antioxidant, anti-inflammatory, anti-tumor, and antibacterial properties. This positions it as a promising candidate for the treatment of IVDD through intradiscal drug delivery. However, local degenerative processes and the inherently low fluid exchange within the intervertebral disk are likely to affect drug retention. In this study, we developed baicalein-loaded porous silk fibroin microspheres to extend the drug release profile. Baicalein-loaded porous silk fibroin microspheres were prepared by electrostatic spraying. Subsequent characterization and evaluation of their intrinsic properties were conducted using nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), transmission electron microscopy(TEM), and fourier transform infrared spectroscopy (FTIR). The findings of our study demonstrated that baicalein-loaded porous silk fibroin microspheres exhibited a sustained drug release profile. Consequently, these microspheres effectively inhibited the senescence of nucleus pulposus cells (NPCs), which induced by Tert-butyl hydroperoxide (TBHP). Mechanistic investigation utilizing transcriptome sequencing revealed that the NF-κB signaling pathway is involved in the effects of baicalein-loaded porous silk fibroin microspheres. Furthermore, our findings demonstrated that the microspheres exhibited excellent biocompatibility in rats subcutaneous implantation model. Collectively, we developed a promising biomaterial for the treatment of IVDD, warranting further systematic preclinical investigation.
Collapse
Affiliation(s)
- Yanchi Gan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangxi University of Chinese Medicine, Nanning 530000, PR China
| | - Jiahui He
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510130, PR China
| | - Yan Gong
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Zixian Wu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - De Liang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Gengyang Shen
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Hui Ren
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China.
| | - Zhaojun Cheng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou 510130, PR China; Guangzhou University of Chinese Medicine Postdoctoral Research Station, Guangzhou 510130, PR China.
| |
Collapse
|
2
|
Fan H, Xue B, Lu J, Sun T, Zhao Q, Liu Y, Niu M, Yu S, Yang Y, Zhang L. Recent advances of bioaerogels in medicine: Preparation, property and application. Int J Biol Macromol 2024; 291:139144. [PMID: 39722377 DOI: 10.1016/j.ijbiomac.2024.139144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Bioaerogels represent a type of three-dimensional porous materials fabricated from natural biopolymers, and show a significant potential for medical application due to their characteristics of extremely low density, high specific surface area, excellent biocompatibility and biodegradability. The preparation method and parameters of bioaerogels are focused on, and their influence on the structure and properties of bioaerogels are discussed in detail. Then, to match the properties of bioaerogels with the medical applications, this work emphasizes the main properties (including biocompatibility, degradability, and mechanical properties), structural parameters (such as suitable porosity, pore size and high specific surface area), and further summarizes the influence of single-component and composite bioaerogels on their properties. Moreover, according to the different applications (wound healing, drug delivery, and tissue engineering and other fields), the function method, mechanism and practical effect of bioaerogels are comprehensively analyzed. Finally, the challenges, future research directions, and solutions for the practical application of bioaerogels in medicine are discussed.
Collapse
Affiliation(s)
- Haoyong Fan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Baoxia Xue
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jiaxin Lu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Tao Sun
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Qinke Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Yong Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Mei Niu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shiping Yu
- Department of Interventional Therapy, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Li Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China.
| |
Collapse
|
3
|
Ma T, Wu J, Chen S, Bian J, Gao G, Nong L. pH-Responsive Modified HAMA Microspheres Regulate the Inflammatory Microenvironment of Intervertebral Discs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63295-63305. [PMID: 39529398 PMCID: PMC11583120 DOI: 10.1021/acsami.4c14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Currently, intervertebral disc (IVD) degeneration is believed to lead to local accumulation of lactic acid in the IVD, a decrease in pH, activation of the inflammatory pathway, and continued destruction of homeostasis of the IVD. To address these issues, the intelligent and accurate release of drugs is particularly important. In this study, acid-sensitive release methacrylated hyaluronic acid (HAMA) microspheres were constructed by using microfluidic technology, which can be used as a targeted drug delivery system for intervertebral disc degeneration (IVDD) through Schiff base chemical bonding on the surface of the microspheres to achieve intelligent drug release. Interleukin-1 receptor antagonist (IL-1 Ra) is a naturally occurring anti-inflammatory antagonist of the interleukin-1 family of pro-inflammatory cytokines. Despite its outstanding broad-spectrum anti-inflammatory effects, IL-1 Ra has a short biological half-life (4-6 h). The slow-release performance of IL-1 Ra can be greatly improved using bovine serum albumin nanoparticles (BNP). In addition, the modified HAMA microspheres exhibited good injectability and porosity, and efficient and uniform loading of nanoparticles was achieved via the Schiff base bond. The inflammatory microenvironment can be significantly reversed by transporting the modified HAMA microspheres-BNPs (Modified MS) to the degenerative nucleus pulposus.
Collapse
Affiliation(s)
- Tao Ma
- Department
of Orthopedics, The Affiliated Changzhou
No. 2 People’s Hospital with Nanjing Medical University, Changzhou 213003, China
- Department
of Orthopedics, Nanjing Medical University, Jiangsu 211166, China
- Changzhou
Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Jingwei Wu
- Department
of Orthopedics, The Affiliated Changzhou
No. 2 People’s Hospital with Nanjing Medical University, Changzhou 213003, China
- Department
of Orthopedics, Nanjing Medical University, Jiangsu 211166, China
- Changzhou
Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Senlin Chen
- Department
of Orthopedics, The Affiliated Changzhou
No. 2 People’s Hospital with Nanjing Medical University, Changzhou 213003, China
- Department
of Orthopedics, Nanjing Medical University, Jiangsu 211166, China
- Changzhou
Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Jiang Bian
- Department
of Orthopedics, The Affiliated Changzhou
No. 2 People’s Hospital with Nanjing Medical University, Changzhou 213003, China
- Changzhou
Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Gongming Gao
- Department
of Orthopedics, The Affiliated Changzhou
No. 2 People’s Hospital with Nanjing Medical University, Changzhou 213003, China
- Changzhou
Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Luming Nong
- Department
of Orthopedics, The Affiliated Changzhou
No. 2 People’s Hospital with Nanjing Medical University, Changzhou 213003, China
- Changzhou
Medical Center, Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|
4
|
Liu S, Ge C, Li Z, Shan J, Chen K, Li X, Liu Y, Zhang X. Visible-Light-Induced Silk Fibroin Hydrogels with Carbon Quantum Dots as Initiators for 3D Bioprinting Applications. ACS Biomater Sci Eng 2024; 10:5822-5831. [PMID: 39169444 DOI: 10.1021/acsbiomaterials.4c01189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Digital light processing (DLP) 3D bioprinting technology has attracted increasing attention in tissue engineering in recent years. However, it still faces significant technical and operational challenges such as cell carcinogenesis caused by prolonged exposure to ultraviolet light and the presence of heavy metal ions in complex photoinitiator systems. In this study, a novel strategy is designed to introduce carbon quantum dots into visible-light-induced silk fibroin bioink as initiators (CDs/SilMA) applied for DLP 3D bioprinting technology. The incorporation of carbon quantum dots facilitates the formation of precise hydrogel structures at 415 nm visible wavelength, enabling the creation of brain, bronchus, spine, and ear models. Replacing heavy metal photoinitiators with carbon quantum dots imparts fluorescence properties to the bioink and enhances its mechanical properties. Meanwhile, the fibroin protein-based hydrogel exhibits favorable properties, such as drug loading, slow release, degradability, and biocompatibility. This is the first study to propose the application of carbon quantum dots in silk fibroin-based bioink. Moreover, the resulting product demonstrates excellent compatibility with the DLP printing process, making it promising for practical applications in various tissue engineering scenarios with specific requirements.
Collapse
Affiliation(s)
- Shuming Liu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Chunhua Ge
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Zhiqiang Li
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jinyao Shan
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Keke Chen
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xuefeng Li
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Yu Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Xiangdong Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
5
|
Shi J, Liu Y, Ling Y, Tang H. Polysaccharide-protein based scaffolds for cartilage repair and regeneration. Int J Biol Macromol 2024; 274:133495. [PMID: 38944089 DOI: 10.1016/j.ijbiomac.2024.133495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Cartilage repair and regeneration have become a global issue that millions of patients from all over the world need surgical intervention to repair the articular cartilage annually due to the limited self-healing capability of the cartilage tissues. Cartilage tissue engineering has gained significant attention in cartilage repair and regeneration by integration of the chondrocytes (or stem cells) and the artificial scaffolds. Recently, polysaccharide-protein based scaffolds have demonstrated unique and promising mechanical and biological properties as the artificial extracellular matrix of natural cartilage. In this review, we summarize the modification methods for polysaccharides and proteins. The preparation strategies for the polysaccharide-protein based hydrogel scaffolds are presented. We discuss the mechanical, physical and biological properties of the polysaccharide-protein based scaffolds. Potential clinical translation and challenges on the artificial scaffolds are also discussed.
Collapse
Affiliation(s)
- Jin Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yu Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Ying Ling
- Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Haoyu Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
| |
Collapse
|
6
|
Yang XC, Wang XX, Wang CY, Zheng HL, Yin M, Chen KZ, Qiao SL. Silk-based intelligent fibers and textiles: structures, properties, and applications. Chem Commun (Camb) 2024; 60:7801-7823. [PMID: 38966911 DOI: 10.1039/d4cc02276a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Multifunctional fibers represent a cornerstone of human civilization, playing a pivotal role in numerous aspects of societal development. Natural biomaterials, in contrast to synthetic alternatives, offer environmental sustainability, biocompatibility, and biodegradability. Among these biomaterials, natural silk is favored in biomedical applications and smart fiber technology due to its accessibility, superior mechanical properties, diverse functional groups, controllable structure, and exceptional biocompatibility. This review delves into the intricate structure and properties of natural silk fibers and their extensive applications in biomedicine and smart fiber technology. It highlights the critical significance of silk fibers in the development of multifunctional materials, emphasizing their mechanical strength, biocompatibility, and biodegradability. A detailed analysis of the hierarchical structure of silk fibers elucidates how these structural features contribute to their unique properties. The review also encompasses the biomedical applications of silk fibers, including surgical sutures, tissue engineering, and drug delivery systems, along with recent advancements in smart fiber applications such as sensing, optical technologies, and energy storage. The enhancement of functional properties of silk fibers through chemical or physical modifications is discussed, suggesting broader high-end applications. Additionally, the review addresses current challenges and future directions in the application of silk fibers in biomedicine and smart fiber technologies, underscoring silk's potential in driving contemporary technological innovations. The versatility and sustainability of silk fibers position them as pivotal elements in contemporary materials science and technology, fostering the development of next-generation smart materials.
Collapse
Affiliation(s)
- Xiao-Chun Yang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Xiao-Xue Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Chen-Yu Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Hong-Long Zheng
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Meng Yin
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Ke-Zheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| | - Sheng-Lin Qiao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China.
| |
Collapse
|
7
|
Wang Y, Zhang C, Cheng J, Yan T, He Q, Huang D, Liu J, Wang Z. Cutting-Edge Biomaterials in Intervertebral Disc Degeneration Tissue Engineering. Pharmaceutics 2024; 16:979. [PMID: 39204324 PMCID: PMC11359550 DOI: 10.3390/pharmaceutics16080979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) stands as the foremost contributor to low back pain (LBP), imposing a substantial weight on the world economy. Traditional treatment modalities encompass both conservative approaches and surgical interventions; however, the former falls short in halting IVDD progression, while the latter carries inherent risks. Hence, the quest for an efficacious method to reverse IVDD onset is paramount. Biomaterial delivery systems, exemplified by hydrogels, microspheres, and microneedles, renowned for their exceptional biocompatibility, biodegradability, biological efficacy, and mechanical attributes, have found widespread application in bone, cartilage, and various tissue engineering endeavors. Consequently, IVD tissue engineering has emerged as a burgeoning field of interest. This paper succinctly introduces the intervertebral disc (IVD) structure and the pathophysiology of IVDD, meticulously classifies biomaterials for IVD repair, and reviews recent advances in the field. Particularly, the strengths and weaknesses of biomaterials in IVD tissue engineering are emphasized, and potential avenues for future research are suggested.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Chuyue Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Junyao Cheng
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Taoxu Yan
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Qing He
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Q.H.); (D.H.)
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Q.H.); (D.H.)
| | - Jianheng Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Zheng Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| |
Collapse
|
8
|
Zeng ZP, Lai CR, Zheng WJ. Ag 2 O-TiO 2 -NTs enhance osteogenic activity in vitro by modulating TNF-α/β-catenin signaling in bone marrow-derived mesenchymal stem cells. Chem Biol Drug Des 2024; 103:e14501. [PMID: 38453253 DOI: 10.1111/cbdd.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The toxic effects of nanoparticles-silver oxide (Ag2 O) limited its use. However, loading Ag2 O nanoparticles into titanium dioxide (TiO2 ) nanotubes (Ag2 O-TiO2 -NTs) has more efficient biological activity and safety. The aim of this study was to observe the effect of Ag2 O-TiO2 -NTs on osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and its mechanism. The enzyme activity of lactate dehydrogenase (LDH) and the expression of RUNX family transcription factor 2 (Runx2), OPN, OCN in BMSCs were detected by quantitative real time polymerase chain reaction. At 14 days of induction, the mineralization ability and alkaline phosphatase (ALP) activity of cells in each group were observed by Alizarin Red S staining and ALP staining. In addition, the protein levels of tumor necrosis factor-α (TNF-α) and β-catenin in BMSCs of each group were observed by western blot. After 14 days of the induction, the mineralization ability and ALP activity of BMSCs in the Ag2 O-TiO2 -NTs group were significantly enhanced compared with those in the Ag2 O and TiO2 groups. Western blot analysis showed that the BMSCs in the Ag2 O-TiO2 -NTs group exhibited much lower protein level of TNF-α and higher protein level of β-catenin than those in the Ag2 O and TiO2 groups.Ag2 O-TiO2 -NTs enhance the osteogenic activity of BMSCs by modulating TNF-α/β-catenin signaling.
Collapse
Affiliation(s)
- Zhan-Peng Zeng
- Department IV of Orthopedics, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Chang-Rong Lai
- Department IV of Orthopedics, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-Jie Zheng
- Department IV of Orthopedics, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Duan L, Wang Z, Fan S, Wang C, Zhang Y. Research progress of biomaterials and innovative technologies in urinary tissue engineering. Front Bioeng Biotechnol 2023; 11:1258666. [PMID: 37645598 PMCID: PMC10461011 DOI: 10.3389/fbioe.2023.1258666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Substantial interests have been attracted to multiple bioactive and biomimetic biomaterials in recent decades because of their ability in presenting a structural and functional reconstruction of urinary tissues. Some innovative technologies have also been surging in urinary tissue engineering and urological regeneration by providing insights into the physiological behavior of the urinary system. As such, the hierarchical structure and tissue function of the bladder, urethra, and ureter can be reproduced similarly to the native urinary tissues. This review aims to summarize recent advances in functional biomaterials and biomimetic technologies toward urological reconstruction. Various nanofirous biomaterials derived from decellularized natural tissues, synthetic biopolymers, and hybrid scaffolds were developed with desired microstructure, surface chemistry, and mechanical properties. Some growth factors, drugs, as well as inorganic nanomaterials were also utilized to enhance the biological activity and functionality of scaffolds. Notably, it is emphasized that advanced approaches, such as 3D (bio) printing and organoids, have also been developed to facilitate structural and functional regeneration of the urological system. So in this review, we discussed the fabrication strategies, physiochemical properties, and biofunctional modification of regenerative biomaterials and their potential clinical application of fast-evolving technologies. In addition, future prospective and commercial products are further proposed and discussed.
Collapse
Affiliation(s)
- Liwei Duan
- The Second Hospital, Jilin University, Changchun, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shuang Fan
- The Second Hospital, Jilin University, Changchun, China
| | - Chen Wang
- The Second Hospital, Jilin University, Changchun, China
| | - Yi Zhang
- The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|