1
|
Chatterjee S, Naeli P, Onar O, Simms N, Garzia A, Hackett A, Coyle K, Harris Snell P, McGirr T, Sawant TN, Dang K, Stoichkova Z, Azam Y, Saunders M, Braun M, Alain T, Tuschl T, McDade S, Longley D, Gkogkas C, Adrain C, Knight JP, Jafarnejad SM. Ribosome Quality Control mitigates the cytotoxicity of ribosome collisions induced by 5-Fluorouracil. Nucleic Acids Res 2024; 52:12534-12548. [PMID: 39351862 PMCID: PMC11551743 DOI: 10.1093/nar/gkae849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 11/12/2024] Open
Abstract
Ribosome quality control (RQC) resolves collided ribosomes, thus preventing their cytotoxic effects. The chemotherapeutic agent 5-Fluorouracil (5FU) is best known for its misincorporation into DNA and inhibition of thymidylate synthase. However, while a major determinant of 5FU's anticancer activity is its misincorporation into RNAs, the mechanisms by which cancer cells overcome the RNA-dependent 5FU toxicity remain ill-defined. Here, we report a role for RQC in mitigating the cytotoxic effects of 5FU. We show that 5FU treatment results in rapid induction of the mTOR signalling pathway, enhanced rate of mRNA translation initiation, and increased ribosome collisions. Consistently, a defective RQC exacerbates the 5FU-induced cell death, which is mitigated by blocking mTOR pathway or mRNA translation initiation. Furthermore, 5FU treatment enhances the expression of the key RQC factors ZNF598 and GIGYF2 via an mTOR-dependent post-translational mechanism. This adaptation likely mitigates the cytotoxic consequences of increased ribosome collisions upon 5FU treatment.
Collapse
Affiliation(s)
- Susanta Chatterjee
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Okan Onar
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Nicole Simms
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Angela Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Kelsey Coyle
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Patric Harris Snell
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Tom McGirr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Tanvi Nitin Sawant
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Kexin Dang
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Zornitsa Vasileva Stoichkova
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Yumna Azam
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Mark P Saunders
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Michael Braun
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ONK1H 8L1, Canada
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Simon S McDade
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Daniel B Longley
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Christos G Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Colin Adrain
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - John R P Knight
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| |
Collapse
|
2
|
Shaw E, Thomas N, Jones J, Abu-Shumays R, Vaaler A, Akeson M, Koutmou K, Jain M, Garcia D. Combining Nanopore direct RNA sequencing with genetics and mass spectrometry for analysis of T-loop base modifications across 42 yeast tRNA isoacceptors. Nucleic Acids Res 2024; 52:12074-12092. [PMID: 39340295 PMCID: PMC11514469 DOI: 10.1093/nar/gkae796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Transfer RNAs (tRNAs) contain dozens of chemical modifications. These modifications are critical for maintaining tRNA tertiary structure and optimizing protein synthesis. Here we advance the use of Nanopore direct RNA-sequencing (DRS) to investigate the synergy between modifications that are known to stabilize tRNA structure. We sequenced the 42 cytosolic tRNA isoacceptors from wild-type yeast and five tRNA-modifying enzyme knockout mutants. These data permitted comprehensive analysis of three neighboring and conserved modifications in T-loops: 5-methyluridine (m5U54), pseudouridine (Ψ55), and 1-methyladenosine (m1A58). Our results were validated using direct measurements of chemical modifications by mass spectrometry. We observed concerted T-loop modification circuits-the potent influence of Ψ55 for subsequent m1A58 modification on more tRNA isoacceptors than previously observed. Growing cells under nutrient depleted conditions also revealed a novel condition-specific increase in m1A58 modification on some tRNAs. A global and isoacceptor-specific classification strategy was developed to predict the status of T-loop modifications from a user-input tRNA DRS dataset, applicable to other conditions and tRNAs in other organisms. These advancements demonstrate how orthogonal technologies combined with genetics enable precise detection of modification landscapes of individual, full-length tRNAs, at transcriptome-scale.
Collapse
Affiliation(s)
- Ethan A Shaw
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Niki K Thomas
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Joshua D Jones
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robin L Abu-Shumays
- Biomolecular Engineering Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Abigail L Vaaler
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Mark Akeson
- Biomolecular Engineering Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Miten Jain
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Department of Physics, Northeastern University, Boston, MA 02115, USA
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA
| | - David M Garcia
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
3
|
Jones JD, Franco MK, Giles RN, Eyler DE, Tardu M, Smith TJ, Snyder LR, Polikanov YS, Kennedy RT, Niederer RO, Koutmou KS. Conserved 5-methyluridine tRNA modification modulates ribosome translocation. Proc Natl Acad Sci U S A 2024; 121:e2401743121. [PMID: 39159370 PMCID: PMC11363252 DOI: 10.1073/pnas.2401743121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/05/2024] [Indexed: 08/21/2024] Open
Abstract
While the centrality of posttranscriptional modifications to RNA biology has long been acknowledged, the function of the vast majority of modified sites remains to be discovered. Illustrative of this, there is not yet a discrete biological role assigned for one of the most highly conserved modifications, 5-methyluridine at position 54 in tRNAs (m5U54). Here, we uncover contributions of m5U54 to both tRNA maturation and protein synthesis. Our mass spectrometry analyses demonstrate that cells lacking the enzyme that installs m5U in the T-loop (TrmA in Escherichia coli, Trm2 in Saccharomyces cerevisiae) exhibit altered tRNA modification patterns. Furthermore, m5U54-deficient tRNAs are desensitized to small molecules that prevent translocation in vitro. This finding is consistent with our observations that relative to wild-type cells, trm2Δ cell growth and transcriptome-wide gene expression are less perturbed by translocation inhibitors. Together our data suggest a model in which m5U54 acts as an important modulator of tRNA maturation and translocation of the ribosome during protein synthesis.
Collapse
Affiliation(s)
- Joshua D. Jones
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Monika K. Franco
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Rachel N. Giles
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Daniel E. Eyler
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Mehmet Tardu
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Tyler J. Smith
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Laura R. Snyder
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Yury S. Polikanov
- Department of Biological Sciences, University of Illinois, Chicago, IL60607
| | | | - Rachel O. Niederer
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Kristin S. Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
4
|
McGirr T, Onar O, Jafarnejad SM. Dysregulated ribosome quality control in human diseases. FEBS J 2024. [PMID: 38949989 DOI: 10.1111/febs.17217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Precise regulation of mRNA translation is of fundamental importance for maintaining homeostasis. Conversely, dysregulated general or transcript-specific translation, as well as abnormal translation events, have been linked to a multitude of diseases. However, driven by the misconception that the transient nature of mRNAs renders their abnormalities inconsequential, the importance of mechanisms that monitor the quality and fidelity of the translation process has been largely overlooked. In recent years, there has been a dramatic shift in this paradigm, evidenced by several seminal discoveries on the role of a key mechanism in monitoring the quality of mRNA translation - namely, Ribosome Quality Control (RQC) - in the maintenance of homeostasis and the prevention of diseases. Here, we will review recent advances in the field and emphasize the biological significance of the RQC mechanism, particularly its implications in human diseases.
Collapse
Affiliation(s)
- Tom McGirr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Okan Onar
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
- Department of Biology, Faculty of Science, Ankara University, Turkey
| | | |
Collapse
|
5
|
Rodell R, Robalin N, Martinez NM. Why U matters: detection and functions of pseudouridine modifications in mRNAs. Trends Biochem Sci 2024; 49:12-27. [PMID: 38097411 PMCID: PMC10976346 DOI: 10.1016/j.tibs.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 01/07/2024]
Abstract
The uridine modifications pseudouridine (Ψ), dihydrouridine, and 5-methyluridine are present in eukaryotic mRNAs. Many uridine-modifying enzymes are associated with human disease, underscoring the importance of uncovering the functions of uridine modifications in mRNAs. These modified uridines have chemical properties distinct from those of canonical uridines, which impact RNA structure and RNA-protein interactions. Ψ, the most abundant of these uridine modifications, is present across (pre-)mRNAs. Recent work has shown that many Ψs are present at intermediate to high stoichiometries that are likely conducive to function and at locations that are poised to influence pre-/mRNA processing. Technological innovations and mechanistic investigations are unveiling the functions of uridine modifications in pre-mRNA splicing, translation, and mRNA stability, which are discussed in this review.
Collapse
Affiliation(s)
- Rebecca Rodell
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Nicolas Robalin
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Nicole M Martinez
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Jones JD, Franco MK, Tardu M, Smith TJ, Snyder LR, Eyler DE, Polikanov Y, Kennedy RT, Niederer RO, Koutmou KS. Conserved 5-methyluridine tRNA modification modulates ribosome translocation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566704. [PMID: 37986750 PMCID: PMC10659410 DOI: 10.1101/2023.11.12.566704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
While the centrality of post-transcriptional modifications to RNA biology has long been acknowledged, the function of the vast majority of modified sites remains to be discovered. Illustrative of this, there is not yet a discrete biological role assigned for one the most highly conserved modifications, 5-methyluridine at position 54 in tRNAs (m 5 U54). Here, we uncover contributions of m 5 U54 to both tRNA maturation and protein synthesis. Our mass spectrometry analyses demonstrate that cells lacking the enzyme that installs m 5 U in the T-loop (TrmA in E. coli , Trm2 in S. cerevisiae ) exhibit altered tRNA modifications patterns. Furthermore, m 5 U54 deficient tRNAs are desensitized to small molecules that prevent translocation in vitro. This finding is consistent with our observations that, relative to wild-type cells, trm2 Δ cell growth and transcriptome-wide gene expression are less perturbed by translocation inhibitors. Together our data suggest a model in which m 5 U54 acts as an important modulator of tRNA maturation and translocation of the ribosome during protein synthesis.
Collapse
|
7
|
Witzenberger M, Burczyk S, Settele D, Mayer W, Welp L, Heiss M, Wagner M, Monecke T, Janowski R, Carell T, Urlaub H, Hauck S, Voigt A, Niessing D. Human TRMT2A methylates tRNA and contributes to translation fidelity. Nucleic Acids Res 2023; 51:8691-8710. [PMID: 37395448 PMCID: PMC10484741 DOI: 10.1093/nar/gkad565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
5-Methyluridine (m5U) is one of the most abundant RNA modifications found in cytosolic tRNA. tRNA methyltransferase 2 homolog A (hTRMT2A) is the dedicated mammalian enzyme for m5U formation at tRNA position 54. However, its RNA binding specificity and functional role in the cell are not well understood. Here we dissected structural and sequence requirements for binding and methylation of its RNA targets. Specificity of tRNA modification by hTRMT2A is achieved by a combination of modest binding preference and presence of a uridine in position 54 of tRNAs. Mutational analysis together with cross-linking experiments identified a large hTRMT2A-tRNA binding surface. Furthermore, complementing hTRMT2A interactome studies revealed that hTRMT2A interacts with proteins involved in RNA biogenesis. Finally, we addressed the question of the importance of hTRMT2A function by showing that its knockdown reduces translation fidelity. These findings extend the role of hTRMT2A beyond tRNA modification towards a role in translation.
Collapse
Affiliation(s)
- Monika Witzenberger
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Sandra Burczyk
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - David Settele
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Wieland Mayer
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Heiss
- Department of Chemistry and Biochemistry, Ludwig-Maximilians University Munich, München, Germany
| | - Mirko Wagner
- Department of Chemistry and Biochemistry, Ludwig-Maximilians University Munich, München, Germany
| | - Thomas Monecke
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Carell
- Department of Chemistry and Biochemistry, Ludwig-Maximilians University Munich, München, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Research Unit Protein Science, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Aaron Voigt
- Department of Neurology, Faculty of Medicine, RWTH Aachen, Aachen, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| |
Collapse
|
8
|
Wang C, Ulryck N, Herzel L, Pythoud N, Kleiber N, Guérineau V, Jactel V, Moritz C, Bohnsack M, Carapito C, Touboul D, Bohnsack K, Graille M. N 2-methylguanosine modifications on human tRNAs and snRNA U6 are important for cell proliferation, protein translation and pre-mRNA splicing. Nucleic Acids Res 2023; 51:7496-7519. [PMID: 37283053 PMCID: PMC10415138 DOI: 10.1093/nar/gkad487] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Modified nucleotides in non-coding RNAs, such as tRNAs and snRNAs, represent an important layer of gene expression regulation through their ability to fine-tune mRNA maturation and translation. Dysregulation of such modifications and the enzymes installing them have been linked to various human pathologies including neurodevelopmental disorders and cancers. Several methyltransferases (MTases) are regulated allosterically by human TRMT112 (Trm112 in Saccharomyces cerevisiae), but the interactome of this regulator and targets of its interacting MTases remain incompletely characterized. Here, we have investigated the interaction network of human TRMT112 in intact cells and identify three poorly characterized putative MTases (TRMT11, THUMPD3 and THUMPD2) as direct partners. We demonstrate that these three proteins are active N2-methylguanosine (m2G) MTases and that TRMT11 and THUMPD3 methylate positions 10 and 6 of tRNAs, respectively. For THUMPD2, we discovered that it directly associates with the U6 snRNA, a core component of the catalytic spliceosome, and is required for the formation of m2G, the last 'orphan' modification in U6 snRNA. Furthermore, our data reveal the combined importance of TRMT11 and THUMPD3 for optimal protein synthesis and cell proliferation as well as a role for THUMPD2 in fine-tuning pre-mRNA splicing.
Collapse
Affiliation(s)
- Can Wang
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Nathalie Ulryck
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Lydia Herzel
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Nicolas Pythoud
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI, FR2048 Strasbourg, France
| | - Nicole Kleiber
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Vincent Guérineau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Vincent Jactel
- Laboratoire de Synthèse Organique (LSO), CNRS, École polytechnique, ENSTA, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Chloé Moritz
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI, FR2048 Strasbourg, France
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI, FR2048 Strasbourg, France
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
9
|
Jones JD, Simcox KM, Kennedy RT, Koutmou KS. Direct sequencing of total Saccharomyces cerevisiae tRNAs by LC-MS/MS. RNA (NEW YORK, N.Y.) 2023; 29:1201-1214. [PMID: 37169396 PMCID: PMC10351886 DOI: 10.1261/rna.079656.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/23/2023] [Indexed: 05/13/2023]
Abstract
Among RNAs, transfer RNAs (tRNAs) contain the widest variety of abundant posttranscriptional chemical modifications. These modifications are crucial for tRNAs to participate in protein synthesis, promoting proper tRNA structure and aminoacylation, facilitating anticodon:codon recognition, and ensuring the reading frame maintenance of the ribosome. While tRNA modifications were long thought to be stoichiometric, it is becoming increasingly apparent that these modifications can change dynamically in response to the cellular environment. The ability to broadly characterize the fluctuating tRNA modification landscape will be essential for establishing the molecular level contributions of individual sites of tRNA modification. The locations of modifications within individual tRNA sequences can be mapped using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). In this approach, a single tRNA species is purified, treated with ribonucleases, and the resulting single-stranded RNA products are subject to LC-MS/MS analysis. The application of LC-MS/MS to study tRNAs is limited by the necessity of analyzing one tRNA at a time, because the digestion of total tRNA mixtures by commercially available ribonucleases produces many short digestion products unable to be uniquely mapped back to a single site within a tRNA. We overcame these limitations by taking advantage of the highly structured nature of tRNAs to prevent the full digestion by single-stranded RNA-specific ribonucleases. Folding total tRNA prior to digestion allowed us to sequence Saccharomyces cerevisiae tRNAs with up to 97% sequence coverage for individual tRNA species by LC-MS/MS. This method presents a robust avenue for directly detecting the distribution of modifications in total tRNAs.
Collapse
Affiliation(s)
- Joshua D Jones
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kaley M Simcox
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|