1
|
Hauer S, Reitz J, Koike T, Hansmann MM, Wolf R. Cycloadditions of Diazoalkenes with P 4 and tBuCP: Access to Diazaphospholes. Angew Chem Int Ed Engl 2024; 63:e202410107. [PMID: 38949951 DOI: 10.1002/anie.202410107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Diazoalkenes readily react with tert-butylphosphaalkyne (tBuCP) and white phosphorus (P4) to afford novel phosphorus heterocycles, 3H-1,2,4-diazamonophospholes and 1,2,3,4-diazadiphospholes. Both species represent rare examples of neutral heterophospholes. The mechanism of formation and the electronic structures of these formal (3+2) cycloaddition products were analyzed computationally. The new phospholes form structurally diverse coordination compounds with transition metal and main group elements. Given the growing number of stable diazoalkenes, this work offers a straightforward route to neutral aza(di-)phospholes as a new ligand class.
Collapse
Affiliation(s)
- Sebastian Hauer
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| | - Justus Reitz
- TU Dortmund, Faculty of Chemistry and Chemical Biology, 44227, Dortmund, Germany
| | - Taichi Koike
- TU Dortmund, Faculty of Chemistry and Chemical Biology, 44227, Dortmund, Germany
| | - Max M Hansmann
- TU Dortmund, Faculty of Chemistry and Chemical Biology, 44227, Dortmund, Germany
| | - Robert Wolf
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| |
Collapse
|
2
|
Kooij B, Chen DW, Fadaei-Tirani F, Severin K. Metal-Mediated Synthesis of a Mixed Arduengo-Fischer Carbodicarbene Ligand. Angew Chem Int Ed Engl 2024; 63:e202407945. [PMID: 38856098 DOI: 10.1002/anie.202407945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
Carbodicarbenes are strong C-donor ligands, which have found numerous applications in organometallic and main group element chemistry. Herein, we report a structurally distinct carbodicarbene ligand, which is formed by dinitrogenative coupling of a Fischer carbene complex with an N-heterocyclic diazoolefin. The resulting carbonyl complex serves as a stable source for the mixed Arduengo-Fischer carbodicarbene ligand. Facile ligand transfer reactions were demonstrated to occur with gold(I), copper(I), palladium(II), and rhodium(I) complexes.
Collapse
Affiliation(s)
- Bastiaan Kooij
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Damien W Chen
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
3
|
Genoux A, Severin K. Nitrous oxide as diazo transfer reagent. Chem Sci 2024:d4sc04530k. [PMID: 39156938 PMCID: PMC11323477 DOI: 10.1039/d4sc04530k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024] Open
Abstract
Nitrous oxide, commonly known as "laughing gas", is formed as a by-product in several industrial processes. It is also readily available by thermal decomposition of ammonium nitrate. Traditionally, the chemical valorization of N2O is achieved via oxidation chemistry, where N2O acts as a selective oxygen atom transfer reagent. Recent results have shown that N2O can also function as an efficient diazo transfer reagent. Synthetically useful methods for synthesizing triazenes, N-heterocycles, and azo- or diazo compounds were developed. This review article summarizes significant advancements in this emerging field.
Collapse
Affiliation(s)
- Alexandre Genoux
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
4
|
Eisner T, Kostenko A, J Kiefer F, Inoue S. Synthesis and isolation of a cyclic bis-vinyl germylene via a diazoolefin adduct of germylene dichloride. Chem Commun (Camb) 2024; 60:558-561. [PMID: 38090978 DOI: 10.1039/d3cc05090d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Since the successful isolation of various stable diazoolefins, an array of complexes containing these promising ligands have been synthesized. We herein report the synthesis, characterization, and structures of neutral group 14 diazoolefin complexes and the subsequent transformation into a new cyclic bis-vinyl germylene.
Collapse
Affiliation(s)
- Teresa Eisner
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry Technische Universität München Lichtenbergstr. 4, 85748, Garching b, München, Germany.
| | - Arseni Kostenko
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry Technische Universität München Lichtenbergstr. 4, 85748, Garching b, München, Germany.
| | - Fiona J Kiefer
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry Technische Universität München Lichtenbergstr. 4, 85748, Garching b, München, Germany.
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry Technische Universität München Lichtenbergstr. 4, 85748, Garching b, München, Germany.
| |
Collapse
|
5
|
Hansmann MM. Diazoalkenes: From an Elusive Intermediate to a Stable Substance Class in Organic Chemistry. Angew Chem Int Ed Engl 2023; 62:e202304574. [PMID: 37095063 DOI: 10.1002/anie.202304574] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 04/26/2023]
Abstract
Over decades diazoalkenes (R2 C=C=N2 ) were postulated as reactive intermediates in organic chemistry even though their direct spectroscopic detection proved very challenging. In the 1970/80ies several groups probed their existence mainly indirectly by trapping experiments or directly by matrix-isolation studies. In 2021, our group and the Severin group reported independently the synthesis and characterization of the first room-temperature stable diazoalkenes, which initiated a rapidly expanding research field. Up to now four different classes of N-heterocyclic substituted room-temperature stable diazoalkenes have been reported. Their properties and unique reactivity, such as N2 /CO exchange or utilization as vinylidene precursors in organic and transition metal chemistry are presented. This review summarizes the early discoveries of diazoalkenes from their initial postulation as transient, elusive species up to the recent findings of the room-temperature stable derivatives.
Collapse
Affiliation(s)
- Max M Hansmann
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 6, Dortmund, Germany
| |
Collapse
|
6
|
Hsueh FC, Rajeshkumar T, Kooij B, Scopelliti R, Severin K, Maron L, Zivkovic I, Mazzanti M. Bonding and Reactivity in Terminal versus Bridging Arenide Complexes of Thorium Acting as Th II Synthons. Angew Chem Int Ed Engl 2023; 62:e202215846. [PMID: 36576035 DOI: 10.1002/anie.202215846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Thorium redox chemistry is extremely scarce due to the high stability of ThIV . Here we report two unique examples of thorium arenide complexes prepared by reduction of a ThIV -siloxide complex in presence of naphthalene, the mononuclear arenide complex [K(OSi(Ot Bu)3 )3 Th(η6 -C10 H8 )] (1) and the inverse-sandwich complex [K(OSi(Ot Bu)3 )3 Th]2 (μ-η6 ,η6 -C10 H8 )] (2). The electrons stored in these complexes allow the reduction of a broad range of substrates (N2 O, AdN3 , CO2 , HBBN). Higher reactivity was found for the complex 1 which reacts with the diazoolefin IDipp=CN2 to yield the unexpected ThIV amidoalkynyl complex 5 via a terminal N-heterocyclic vinylidene intermediate. This work showed that arenides can act as convenient redox-active ligands for implementing thorium-ligand cooperative multielectron transfer and that the reactivity can be tuned by the arenide binding mode.
Collapse
Affiliation(s)
- Fang-Che Hsueh
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse Cedex 4, France
| | - Bastiaan Kooij
- Laboratory of Supramolecular Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Rosario Scopelliti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Laboratory of Supramolecular Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse Cedex 4, France
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
7
|
Kooij B, Varava P, Fadaei-Tirani F, Scopelliti R, Pantazis DA, Van Trieste GP, Powers DC, Severin K. Copper Complexes with Diazoolefin Ligands and their Photochemical Conversion into Alkenylidene Complexes. Angew Chem Int Ed Engl 2023; 62:e202214899. [PMID: 36445783 DOI: 10.1002/anie.202214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
Homometallic copper complexes with alkenylidene ligands are discussed as intermediates in catalysis but the isolation of such complexes has remained elusive. Herein, we report the structural characterization of copper complexes with bridging and terminal alkenylidene ligands. The compounds were obtained by irradiation of CuI complexes with N-heterocyclic diazoolefin ligands. The complex with a terminal alkenylidene ligand required isolation in a crystalline matrix, and its structural characterization was enabled by in crystallo photolysis at low temperature.
Collapse
Affiliation(s)
- Bastiaan Kooij
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Paul Varava
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | | | | | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|