1
|
Zhang R, Yan Z, Gao M, Zheng B, Yue B, Qiu M. Recent advances in two-dimensional materials for drug delivery. J Mater Chem B 2024; 12:12437-12469. [PMID: 39533870 DOI: 10.1039/d4tb01787k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Two-dimensional (2D) materials exhibit significant potential in biomedical applications, particularly as drug carriers. Thus, 2D materials, including graphene, black phosphorus, transition metal dichalcogenides, transition metal carbides/nitrides, and hexagonal boron nitride, have been extensively studied. Their large specific surface area, abundant surface active sites, and excellent biocompatibility and biodegradability make them ideal platforms for drug loading and delivery. By optimizing the physicochemical properties and methods for the surface modification of 2D materials, improved drug release mechanisms and enhanced combination therapy effects can be achieved, providing a reliable foundation for efficient cancer treatment. This review provides a comprehensive analysis of the recent advances in the utilization of 2D materials for drug delivery. It systematically categorizes and summarizes the preparation methodologies, surface modification strategies, application domains, primary advantages and potential drawbacks of various 2D materials in the biomedical field. Furthermore, it provides an extensive overview of current challenges in this field and outlines potential future research directions for 2D materials in drug delivery based on existing issues.
Collapse
Affiliation(s)
- Ranran Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Zichao Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Ming Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Bingxin Zheng
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, P. R. China.
| | - Bin Yue
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, P. R. China.
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518060, P. R. China
| |
Collapse
|
2
|
Kong C, Guo Z, Teng T, Yao Q, Yu J, Wang M, Ma Y, Wang P, Tang Q. Electroactive Nanomaterials for the Prevention and Treatment of Heart Failure: From Materials and Mechanisms to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406206. [PMID: 39268781 DOI: 10.1002/smll.202406206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Heart failure (HF) represents a cardiovascular disease that significantly threatens global well-being and quality of life. Electroactive nanomaterials, characterized by their distinctive physical and chemical properties, emerge as promising candidates for HF prevention and management. This review comprehensively examines electroactive nanomaterials and their applications in HF intervention. It presents the definition, classification, and intrinsic characteristics of conductive, piezoelectric, and triboelectric nanomaterials, emphasizing their mechanical robustness, electrical conductivity, and piezoelectric coefficients. The review elucidates their applications and mechanisms: 1) early detection and diagnosis, employing nanomaterial-based sensors for real-time cardiac health monitoring; 2) cardiac tissue repair and regeneration, providing mechanical, chemical, and electrical stimuli for tissue restoration; 3) localized administration of bioactive biomolecules, genes, or pharmacotherapeutic agents, using nanomaterials as advanced drug delivery systems; and 4) electrical stimulation therapies, leveraging their properties for innovative pacemaker and neurostimulation technologies. Challenges in clinical translation, such as biocompatibility, stability, and scalability, are discussed, along with future prospects and potential innovations, including multifunctional and stimuli-responsive nanomaterials for precise HF therapies. This review encapsulates current research and future directions concerning the use of electroactive nanomaterials in HF prevention and management, highlighting their potential to innovating in cardiovascular medicine.
Collapse
Affiliation(s)
- Chunyan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Qi Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Jiabin Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Mingyu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Yulan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Pan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| |
Collapse
|
3
|
Iravani S, Khosravi A, Nazarzadeh Zare E, Varma RS, Zarrabi A, Makvandi P. MXenes and artificial intelligence: fostering advancements in synthesis techniques and breakthroughs in applications. RSC Adv 2024; 14:36835-36851. [PMID: 39574930 PMCID: PMC11580157 DOI: 10.1039/d4ra06384h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
This review explores the synergistic relationship between MXenes and artificial intelligence (AI), highlighting recent advancements in predicting and optimizing the properties, synthesis routes, and diverse applications of MXenes and their composites. MXenes possess fascinating characteristics that position them as promising candidates for a variety of technological applications, including energy storage, sensors/detectors, actuators, catalysis, and neuromorphic systems. The integration of AI methodologies provides a robust toolkit to tackle the complexities inherent in MXene research, facilitating property predictions and innovative applications. We discuss the challenges associated with the predictive capabilities for novel properties of MXenes and emphasize the necessity for sophisticated AI models to unravel the intricate relationships between structural features and material behaviors. Moreover, we examine the optimization of synthesis routes for MXenes through AI-driven approaches, underscoring the potential for streamlining and enhancing synthesis processes via data-driven insights. Furthermore, the role of AI is elucidated in enabling targeted applications of MXenes across multiple domains, illustrating the correlations between MXene properties and application performance. The synergistic integration of MXenes and AI marks the dawn of a new era in material design and innovation, with profound implications for advancing diverse technological frontiers.
Collapse
Affiliation(s)
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University Istanbul 34959 Turkiye
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University Damghan 36716-45667 Iran
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura 140401 Punjab India
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos 13565-905 São Carlos SP Brazil
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University Istanbul Turkiye
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University Taoyuan Taiwan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital 324000 Quzhou Zhejiang China
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University Chennai-600077 India
- University Centre for Research & Development, Chandigarh University Mohali Punjab 140413 India
- Chitkara Centre for Research and Development, Chitkara University Himachal Pradesh 174103 India
| |
Collapse
|
4
|
Zarepour A, Rafati N, Khosravi A, Rabiee N, Iravani S, Zarrabi A. MXene-based composites in smart wound healing and dressings. NANOSCALE ADVANCES 2024; 6:3513-3532. [PMID: 38989508 PMCID: PMC11232544 DOI: 10.1039/d4na00239c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 07/12/2024]
Abstract
MXenes, a class of two-dimensional materials, exhibit considerable potential in wound healing and dressing applications due to their distinctive attributes, including biocompatibility, expansive specific surface area, hydrophilicity, excellent electrical conductivity, unique mechanical properties, facile surface functionalization, and tunable band gaps. These materials serve as a foundation for the development of advanced wound healing materials, offering multifunctional nanoplatforms with theranostic capabilities. Key advantages of MXene-based materials in wound healing and dressings encompass potent antibacterial properties, hemostatic potential, pro-proliferative attributes, photothermal effects, and facilitation of cell growth. So far, different types of MXene-based materials have been introduced with improved features for wound healing and dressing applications. This review covers the recent advancements in MXene-based wound healing and dressings, with a focus on their contributions to tissue regeneration, infection control, anti-inflammation, photothermal effects, and targeted therapeutic delivery. We also discussed the constraints and prospects for the future application of these nanocomposites in the context of wound healing/dressings.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai 600 077 India
| | - Nesa Rafati
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University Tehran Iran
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University Istanbul 34959 Turkey
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University Perth WA 6150 Australia
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University Istanbul 34396 Turkey
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University Taoyuan 320315 Taiwan
| |
Collapse
|
5
|
Zhang J, Liu J, Huang Y, Yan L, Xu S, Zhang G, Pei L, Yu H, Zhu X, Han X. Current role of magnetic resonance imaging on assessing and monitoring the efficacy of phototherapy. Magn Reson Imaging 2024; 110:149-160. [PMID: 38621553 DOI: 10.1016/j.mri.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Phototherapy, also known as photobiological therapy, is a non-invasive and highly effective physical treatment method. Its broad use in clinics has led to significant therapeutic results. Phototherapy parameters, such as intensity, wavelength, and duration, can be adjusted to create specific therapeutic effects for various medical conditions. Meanwhile, Magnetic Resonance Imaging (MRI), with its diverse imaging sequences and excellent soft-tissue contrast, provides a valuable tool to understand the therapeutic effects and mechanisms of phototherapy. This review explores the clinical applications of commonly used phototherapy techniques, gives a brief overview of how phototherapy impacts different diseases, and examines MRI's role in various phototherapeutic scenarios. We argue that MRI is crucial for precise targeting, treatment monitoring, and prognosis assessment in phototherapy. Future research and applications will focus on personalized diagnosis and monitoring of phototherapy, expanding its applications in treatment and exploring multimodal imaging technology to enhance diagnostic and therapeutic precision and effectiveness.
Collapse
Affiliation(s)
- Jiangong Zhang
- Department of Nuclear Medicine, The First people's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, PR China
| | - Jiahuan Liu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Yang Huang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Linlin Yan
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Shufeng Xu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Guozheng Zhang
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Lei Pei
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Huachen Yu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Xisong Zhu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Xiaowei Han
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China.
| |
Collapse
|
6
|
Iravani S, Nazarzadeh Zare E, Makvandi P. Multifunctional MXene-Based Platforms for Soft and Bone Tissue Regeneration and Engineering. ACS Biomater Sci Eng 2024; 10:1892-1909. [PMID: 38466909 DOI: 10.1021/acsbiomaterials.3c01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
MXenes and their composites hold great promise in the field of soft and bone tissue regeneration and engineering (TRE). However, there are challenges that need to be overcome, such as ensuring biocompatibility and controlling the morphologies of MXene-based scaffolds. The future prospects of MXenes in TRE include enhancing biocompatibility through surface modifications, developing multifunctional constructs, and conducting in vivo studies for clinical translation. The purpose of this perspective about MXenes and their composites in soft and bone TRE is to critically evaluate their potential applications and contributions in this field. This perspective aims to provide a comprehensive analysis of the challenges, advantages, limitations, and future prospects associated with the use of MXenes and their composites for soft and bone TRE. By examining the existing literature and research, the review seeks to consolidate the current knowledge and highlight the key findings and advancements in MXene-based TRE. It aims to contribute to the understanding of MXenes' role in promoting soft and bone TRE, addressing the challenges faced in terms of biocompatibility, morphology control, and tissue interactions.
Collapse
Affiliation(s)
- Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Avenue, Isfahan 81756-33551, Iran
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran
- Centre of Research Impact and Outreach, Chitkara University, Rajpura 140417, Punjab, India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, Zhejiang, China
- Chitkara Centre for Research and Development, Chitkara University, Kalujhanda 174103, Himachal Pradesh, India
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| |
Collapse
|
7
|
Rizwan M, Roy VAL, Abbasi R, Irfan S, Khalid W, Atif M, Ali Z. Novel 2D MXene Cobalt Ferrite (CoF@Ti 3C 2) Composite: A Promising Photothermal Anticancer In Vitro Study. ACS Biomater Sci Eng 2024; 10:2074-2087. [PMID: 38111288 DOI: 10.1021/acsbiomaterials.3c01328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
In search of materials with superior capability of light-to-heat (photothermal) conversion, biocompatibility, and confinement of active photothermal materials within the cells, novel magnetic MXene-based nanocomposites are found to possess all of these criteria. The CoF@Ti3C2 composite is fabricated by a simple two-step method, including an exfoliation strategy followed by sonochemical method. MXene composite has been modified with polyvinylpyrrolidone (PVP) to improve the stability in physiological conditions. The synthesized composite was characterized with multiple analytical tools. In vitro photothermal conversion efficiency of composite was determined by the time constant method and achieved η = 34.2% with an NIR 808 nm laser. In vitro, cytotoxicity studies conducted on human malignant melanoma (Ht144) and cells validated the photothermal property of the CoF@Ti3C2-PVP composite in the presence of an NIR laser (808 nm, 1.0 W cm-2), with significantly increased cytotoxicity. Calculated IC50 values were 86 μg/mL with laser, compared to 226 μg/mL without the presence of NIR laser. Microscopic results demonstrated increased apoptosis in the presence of NIR laser. Additionally, hemolysis assay confirmed biocompatibility of CoF@Ti3C2-PVP composite for intravenous applications at the IC50 concentration. The research described in this work expands the potential applications of MXene-based nanoplatforms in the biomedical field, particularly in photothermal therapy (PTT). Furthermore, the addition of cobalt ferrite serves as a magnetic nanocomposite, which eventually helps to confine therapeutic photothermal materials inside the cells, provides enhanced photothermal conversion efficiency, and creates externally controlled theranostic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Hong Kong
| | - Rashda Abbasi
- Institute of Biomedical and Genetic Engineering, 24 Mauve Area, Sector G-9/1, Islamabad 44000, Pakistan
| | - Sumaira Irfan
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| | - Waqas Khalid
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| | - Muhammad Atif
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| | - Zulqurnain Ali
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| |
Collapse
|
8
|
Xu Z, Chen Y, Meng Q, Yang A, Zhang H, Zhang G. N/P co-doped MXene hollow microcapsules by surfactants assisted hydrothermal-freeze drying for adjustable permeability. NANOTECHNOLOGY 2024; 35:125604. [PMID: 38100838 DOI: 10.1088/1361-6528/ad1648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
The assembly of MXene materials into microcapsules has drawn great attentions due to their unique properties. However, rational design and synthesis of MXene-based microcapsules with specific nanostructures at the molecular scale remains challenging. Herein, we report a strategy to synthesize N/P co-doped MXene hollow flower-like microcapsules with adjustable permeability via dual surfactants assisted hydrothermal-freeze drying method. In contrast to anionic surfactants, cationic surfactants exhibited effective electrostatic interactions with MXene nanosheets during the hydrothermal process. Manipulation of dual surfactants in hydrothermal process realized N and P co-doping of MXene to improve flexibility and promoted the generation of abundant internal cavities in flower-like microcapsules. Based on the unique microstructure, the prepared hollow flower-like microcapsules showed excellent performance, stability and reusability in size-selective release of small organic molecules. Moreover, the release rate can be controlled by turning the oxidation state and type of MXene. The strategy delineates promising prospects for the design of MXene-based microcapsules with specific structures.
Collapse
Affiliation(s)
- Zehai Xu
- Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yancheng Chen
- Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qin Meng
- College of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Asan Yang
- Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Honghua Zhang
- Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Guoliang Zhang
- Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
9
|
Wang S, Zhang C, Fang F, Fan Y, Yang J, Zhang J. Beyond traditional light: NIR-II light-activated photosensitizers for cancer therapy. J Mater Chem B 2023; 11:8315-8326. [PMID: 37523205 DOI: 10.1039/d3tb00668a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
With increasing demand for the accurate and safe treatment of cancer, non-invasive photodynamic therapy (PDT) has received widespread attention. However, most conventional photosensitizers are typically excited by short-wavelength visible light (400-700 nm), thus substantially hindering the penetration of light and the therapeutic effectiveness of the PDT procedure. Fortunately, near-infrared (NIR) light (>700 nm), in particular, light in the second near-infrared region (NIR-II, 1000-1700 nm) has a higher upper radiation limit, greater tissue tolerance, and deeper tissue penetration compared with traditional short-wavelength light excitation, and shows considerable potential in the clinical treatment of cancer. Therefore, it is of paramount importance and clinical value to develop photosensitizers that are excited by NIR-II light. In this review, for the first time we focus completely on recent progress made with various NIR-II photosensitizers for cancer treatment via PDT, and we briefly present the ongoing challenges and prospects of currently developed NIR-II photosensitizers for clinical practice in the near future. We believe that the above topics will inspire broad interest in researchers from interdisciplinary fields that include chemistry, materials science, pharmaceuticals, and clinical medicine, and provide insightful perspectives for exploiting new NIR-II photosensitizers for biomedical applications.
Collapse
Affiliation(s)
- Sa Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Chuang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Yueyun Fan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Jiani Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
10
|
Abstract
MXenes with their unique electronic, optical, chemical, and mechanical properties have shown great promise in soft robotics. MXene-based soft actuators have been designed to display ultrafast actuations and recovery speeds as well as angle-independent structural colors in response to vapor. Several studies have developed soft actuators by combining MXenes with other materials to mimic the movement of natural organisms. Thus, MXene-based soft actuators have the potential to revolutionize the field of soft robotics and flexible electronics (e.g., wearable devices and artificial muscles). MXene-based artificial muscles have been explored for use in kinetic soft robotics as actuators in microsystems requiring exceptional compliance. MXene-based sensors and actuators have already been developed for human-like sensors and photodetection. However, there are still challenges that need to be addressed in such applications, such as the design of stretchable and compliant robotic skins with a high-level functional integration for soft robotics. The integration of various devices, such as power sources, sensors, and actuators, into soft robotics is another crucial challenge. Despite the excellent stretchability and tensile strength of MXene-based composites, there is a vital need to develop their mechanical and electrochemical features and grant them multi-functionalities. Herein, recent developments pertaining to the applications of MXenes and their composites in soft robotics are discussed with a focus on the important challenges and future perspectives.
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| |
Collapse
|
11
|
Mohajer F, Mirhosseini-Eshkevari B, Ahmadi S, Ghasemzadeh MA, Mohammadi Ziarani G, Badiei A, Farshidfar N, Varma RS, Rabiee N, Iravani S. Advanced Nanosystems for Cancer Therapeutics: A Review. ACS APPLIED NANO MATERIALS 2023; 6:7123-7149. [DOI: 10.1021/acsanm.3c00859] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran 19938-93973, Iran
| | | | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | | | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran 19938-93973, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran 14179-35840, Iran
| | - Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Rajender S. Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), 1402/2, Liberec 1 461 17, Czech Republic
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
12
|
Zarepour A, Ahmadi S, Rabiee N, Zarrabi A, Iravani S. Self-Healing MXene- and Graphene-Based Composites: Properties and Applications. NANO-MICRO LETTERS 2023; 15:100. [PMID: 37052734 PMCID: PMC10102289 DOI: 10.1007/s40820-023-01074-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Today, self-healing graphene- and MXene-based composites have attracted researchers due to the increase in durability as well as the cost reduction in long-time applications. Different studies have focused on designing novel self-healing graphene- and MXene-based composites with enhanced sensitivity, stretchability, and flexibility as well as improved electrical conductivity, healing efficacy, mechanical properties, and energy conversion efficacy. These composites with self-healing properties can be employed in the field of wearable sensors, supercapacitors, anticorrosive coatings, electromagnetic interference shielding, electronic-skin, soft robotics, etc. However, it appears that more explorations are still needed to achieve composites with excellent arbitrary shape adaptability, suitable adhesiveness, ideal durability, high stretchability, immediate self-healing responsibility, and outstanding electromagnetic features. Besides, optimizing reaction/synthesis conditions and finding suitable strategies for functionalization/modification are crucial aspects that should be comprehensively investigated. MXenes and graphene exhibited superior electrochemical properties with abundant surface terminations and great surface area, which are important to evolve biomedical and sensing applications. However, flexibility and stretchability are important criteria that need to be improved for their future applications. Herein, the most recent advancements pertaining to the applications and properties of self-healing graphene- and MXene-based composites are deliberated, focusing on crucial challenges and future perspectives.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Türkiye
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19857-17443, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 19857-17443, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia.
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Türkiye.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Esfahān, 81746-73461, Iran.
| |
Collapse
|
13
|
Bhatt HN, Pena-Zacarias J, Beaven E, Zahid MI, Ahmad SS, Diwan R, Nurunnabi M. Potential and Progress of 2D Materials in Photomedicine for Cancer Treatment. ACS APPLIED BIO MATERIALS 2023; 6:365-383. [PMID: 36753355 PMCID: PMC9975046 DOI: 10.1021/acsabm.2c00981] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Over the last decades, photomedicine has made a significant impact and progress in treating superficial cancer. With tremendous efforts many of the technologies have entered clinical trials. Photothermal agents (PTAs) have been considered as emerging candidates for accelerating the outcome from photomedicine based cancer treatment. Besides various inorganic and organic candidates, 2D materials such as graphene, boron nitride, and molybdenum disulfide have shown significant potential for photothermal therapy (PTT). The properties such as high surface area to volume, biocompatibility, stability in physiological media, ease of synthesis and functionalization, and high photothermal conversion efficiency have made 2D nanomaterials wonderful candidates for PTT to treat cancer. The targeting or localized activation could be achieved when PTT is combined with chemotherapies, immunotherapies, or photodynamic therapy (PDT) to provide better outcomes with fewer side effects. Though significant development has been made in the field of phototherapeutic drugs, several challenges have restricted the use of PTT in clinical use and hence they have not yet been tested in large clinical trials. In this review, we attempted to discuss the progress, properties, applications, and challenges of 2D materials in the field of PTT and their application in photomedicine.
Collapse
Affiliation(s)
- Himanshu N. Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Jaqueline Pena-Zacarias
- Department of Biological Sciences, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Elfa Beaven
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Md Ikhtiar Zahid
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Environmental Science & Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Sheikh Shafin Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Environmental Science & Engineering and Aerospace Center (cSETR), The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Department of Biomedical Engineering, Environmental Science & Engineering, and Aerospace Center (cSETR), The University of Texas El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
14
|
Mohajer F, Ziarani GM, Badiei A, Iravani S, Varma RS. MXene-Carbon Nanotube Composites: Properties and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:345. [PMID: 36678099 PMCID: PMC9867311 DOI: 10.3390/nano13020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Today, MXenes and their composites have shown attractive capabilities in numerous fields of electronics, co-catalysis/photocatalysis, sensing/imaging, batteries/supercapacitors, electromagnetic interference (EMI) shielding, tissue engineering/regenerative medicine, drug delivery, cancer theranostics, and soft robotics. In this aspect, MXene-carbon nanotube (CNT) composites have been widely constructed with improved environmental stability, excellent electrical conductivity, and robust mechanical properties, providing great opportunities for designing modern and intelligent systems with diagnostic/therapeutic, electronic, and environmental applications. MXenes with unique architectures, large specific surface areas, ease of functionalization, and high electrical conductivity have been employed for hybridization with CNTs with superb heat conductivity, electrical conductivity, and fascinating mechanical features. However, most of the studies have centered around their electronic, EMI shielding, catalytic, and sensing applications; thus, the need for research on biomedical and diagnostic/therapeutic applications of these materials ought to be given more attention. The photothermal conversion efficiency, selectivity/sensitivity, environmental stability/recyclability, biocompatibility/toxicity, long-term biosafety, stimuli-responsiveness features, and clinical translation studies are among the most crucial research aspects that still need to be comprehensively investigated. Although limited explorations have focused on MXene-CNT composites, future studies should be planned on the optimization of reaction/synthesis conditions, surface functionalization, and toxicological evaluations. Herein, most recent advancements pertaining to the applications of MXene-CNT composites in sensing, catalysis, supercapacitors/batteries, EMI shielding, water treatment/pollutants removal are highlighted, focusing on current trends, challenges, and future outlooks.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran 19938-93973, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran 19938-93973, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran 14179-35840, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rajender S. Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), 1402/2, 461 17 Liberec, Czech Republic
| |
Collapse
|
15
|
Liu H, Xing X, Tan Y, Dong H. Two-dimensional transition metal carbides and nitrides (MXenes) based biosensing and molecular imaging. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4977-4993. [PMID: 39634292 PMCID: PMC11501147 DOI: 10.1515/nanoph-2022-0550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/28/2022] [Indexed: 12/07/2024]
Abstract
As a "star material", 2D transition metal carbides and/or nitrides (MXenes) have tremendous potential applications in biosensor development and molecular imaging. MXenes have a lot of advantages due to their large specific surface, excellent electrical conductivity, adjustable band gap, and easy modification. MXenes that immobilized with DNA strands, proteins, enzymes, or other bioluminescent materials on the surface, have been used to measure small molecules with extraordinary sensitivity and remarkable limit of detection. This review provides an overview of most recent development in the synthesis, fundamental properties, biosensing, and molecular imaging applications of MXenes. We focused on molecular detection through MXene-based electrochemical properties their challenges and novel opportunities of MXenes in biological applications. This article will provide a guide for researchers who are interested in the application of MXenes biosensors.
Collapse
Affiliation(s)
- Huiyu Liu
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen518060, China
| | - Xiaotong Xing
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen518060, China
| | - Yan Tan
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen518060, China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
16
|
Mohajer F, Ziarani GM, Badiei A, Iravani S, Varma RS. Advanced MXene-Based Micro- and Nanosystems for Targeted Drug Delivery in Cancer Therapy. MICROMACHINES 2022; 13:mi13101773. [PMID: 36296126 PMCID: PMC9606889 DOI: 10.3390/mi13101773] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 05/04/2023]
Abstract
MXenes with unique mechanical, optical, electronic, and thermal properties along with a specific large surface area for surface functionalization/modification, high electrical conductivity, magnetic properties, biocompatibility, and low toxicity have been explored as attractive candidates for the targeted delivery of drugs in cancer therapy. These two-dimensional materials have garnered much attention in the field of cancer therapy since they have shown suitable photothermal effects, biocompatibility, and luminescence properties. However, outstanding challenging issues regarding their pharmacokinetics, biosafety, targeting properties, optimized functionalization, synthesis/reaction conditions, and clinical translational studies still need to be addressed. Herein, recent advances and upcoming challenges in the design of advanced targeted drug delivery micro- and nanosystems in cancer therapy using MXenes have been discussed to motivate researchers to further investigate this field of science.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran 19938-93973, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran 19938-93973, Iran
- Correspondence: (G.M.Z.); (R.S.V.)
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran 14176-14411, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Correspondence: (G.M.Z.); (R.S.V.)
| |
Collapse
|
17
|
Iravani S, Varma RS. MXene-Based Photocatalysts in Degradation of Organic and Pharmaceutical Pollutants. Molecules 2022; 27:6939. [PMID: 36296531 PMCID: PMC9606916 DOI: 10.3390/molecules27206939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
These days, explorations have focused on designing two-dimensional (2D) nanomaterials with useful (photo)catalytic and environmental applications. Among them, MXene-based composites have garnered great attention owing to their unique optical, mechanical, thermal, chemical, and electronic properties. Various MXene-based photocatalysts have been inventively constructed for a variety of photocatalytic applications ranging from pollutant degradation to hydrogen evolution. They can be applied as co-catalysts in combination with assorted common photocatalysts such as metal sulfide, metal oxides, metal-organic frameworks, graphene, and graphitic carbon nitride to enhance the function of photocatalytic removal of organic/pharmaceutical pollutants, nitrogen fixation, photocatalytic hydrogen evolution, and carbon dioxide conversion, among others. High electrical conductivity, robust photothermal effects, large surface area, hydrophilicity, and abundant surface functional groups of MXenes render them as attractive candidates for photocatalytic removal of pollutants as well as improvement of photocatalytic performance of semiconductor catalysts. Herein, the most recent developments in photocatalytic degradation of organic and pharmaceutical pollutants using MXene-based composites are deliberated, with a focus on important challenges and future perspectives; techniques for fabrication of these photocatalysts are also covered.
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
18
|
Iravani S, Varma RS. MXenes in Cancer Nanotheranostics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193360. [PMID: 36234487 PMCID: PMC9565327 DOI: 10.3390/nano12193360] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 05/21/2023]
Abstract
MXenes encompass attractive properties such as a large surface area, unique chemical structures, stability, elastic mechanical strength, excellent electrical conductivity, hydrophilicity, and ease of surface functionalization/modifications, which make them one of the broadly explored two-dimensional materials in the world. MXene-based micro- and nanocomposites/systems with special optical, mechanical, electronic, and excellent targeting/selectivity features have been explored for cancer nanotheranostics. These materials exhibit great diagnostic and therapeutic potential and offer opportunities for cancer photoacoustic imaging along with photodynamic and photothermal therapy. They can be applied to targeted anticancer drug delivery while being deployed for the imaging/diagnosis of tumors/cancers and malignancies. MXene-based systems functionalized with suitable biocompatible or bioactive agents have suitable cellular uptake features with transferring potential from vascular endothelial cells and specific localization, high stability, and auto-fluorescence benefits at different emission-excitation wavelengths, permitting post-transport examination and tracking. The surface engineering of MXenes can improve their biocompatibility, targeting, bioavailability, and biodegradability along with their optical, mechanical, and electrochemical features to develop multifunctional systems with cancer theranostic applications. However, challenges still persist in terms of their environmentally benign fabrication, up-scalability, functionality improvement, optimization conditions, surface functionalization, biocompatibility, biodegradability, clinical translational studies, and pharmacokinetics. This manuscript delineates the recent advancements, opportunities, and important challenges pertaining to the cancer nanotheranostic potential of MXenes and their derivatives.
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Correspondence: (S.I.); (R.S.V.)
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Correspondence: (S.I.); (R.S.V.)
| |
Collapse
|
19
|
Iravani P, Iravani S, Varma RS. MXene-Chitosan Composites and Their Biomedical Potentials. MICROMACHINES 2022; 13:1383. [PMID: 36144006 PMCID: PMC9500609 DOI: 10.3390/mi13091383] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/21/2023]
Abstract
Today, MXenes with fascinating electronic, thermal, optical, and mechanical features have been broadly studied for biomedical applications, such as drug/gene delivery, photothermal/photodynamic therapy, antimicrobials/antivirals, sensing, tissue engineering, and regenerative medicine. In this context, various MXene-polymer composites have been designed to improve the characteristics such as physiological stability, sustained/controlled release behaviors, biodegradability, biocompatibility, selectivity/sensitivity, and functionality. Chitosan with advantages of ease of modification, biodegradability, antibacterial activities, non-toxicity, and biocompatibility can be considered as attractive materials for designing hybridized composites together with MXenes. These hybrid composites ought to be further explored for biomedical applications because of their unique properties such as high photothermal conversion efficiency, improved stability, selectivity/sensitivity, stimuli-responsiveness behaviors, and superior antibacterial features. These unique structural, functional, and biological attributes indicate that MXene-chitosan composites are attractive alternatives in biomedical engineering. However, several crucial aspects regarding the surface functionalization/modification, hybridization, nanotoxicological analyses, long-term biosafety assessments, biocompatibility, in vitro/in vivo evaluations, identification of optimization conditions, implementation of environmentally-benign synthesis techniques, and clinical translation studies are still need to be examined by researchers. Although very limited studies have revealed the great potentials of MXene-chitosan hybrids in biomedicine, the next steps should be toward the extensive research and detailed analyses in optimizing their properties and improving their functionality with a clinical and industrial outlook. Herein, recent developments in the use of MXene-chitosan composites with biomedical potentials are deliberated, with a focus on important challenges and future perspectives. In view of the fascinating properties and multifunctionality of MXene-chitosan composites, these hybrid materials can open significant new opportunities in the future for bio- and nano-medicine arena.
Collapse
Affiliation(s)
- Parisa Iravani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|