1
|
Lee AL, Mooney DT, McKee H. Direct C-H functionalisation of azoles via Minisci reactions. Org Biomol Chem 2024. [PMID: 39479918 DOI: 10.1039/d4ob01526f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Azoles have widespread applications in medicinal chemistry; for example, thiazoles, imidazoles, benzimidazoles, isoxazoles, tetrazoles and triazoles appear in the top 25 most frequently used N-heterocycles in FDA-approved drugs. Efficient routes for the late-stage C-H functionalisation of azole cores would therefore be highly desirable. The Minisci reaction, a nucleophilic radical addition reaction onto N-heterocyclic bases, is a direct C-H functionalisation reaction that has the potential to be a powerful method for C-H functionalisations of azole scaffolds. However, azoles have not been as widely studied as substrates for modern Minisci-type reactions as they are often more electron-rich and thus more challenging substrates compared to electron-poor 6-membered N-heterocycles such as quinolines, pyrazines and pyridines typically used in Minisci reactions. Nevertheless, with the prevalence of azole scaffolds in drug design, the Minisci reaction has the potential to be a transformative tool for late-stage C-H functionalisations to efficiently access decorated azole motifs. This review thus aims to give an overview of the C-H functionalisation of azoles via Minisci-type reactions, highlighting recent progress, existing limitations and potential areas for growth.
Collapse
Affiliation(s)
- Ai-Lan Lee
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - David T Mooney
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Heather McKee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
2
|
Ma C, Guo Q, Meng H, Yan S, Ding Q, Jiang Y, Yu B. Photoredox-Catalyzed Carbamoyl Radical-Initiated Dearomative Spirocyclization To Access Spiro-Cyclohexadiene Oxindoles. Org Lett 2024; 26:8503-8508. [PMID: 39353048 DOI: 10.1021/acs.orglett.4c03045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The sustainable construction of spirocyclic compounds is important to the scientific community and the pharmaceutical industries. Herein, we demonstrate a carbamoyl radical-initiated intramolecular dearomative spirocyclization to access the spiro-cyclohexadiene oxindoles under visible light irradiation, which constitutes the first example of accessing the I-substituted derivatives that facilitate diversified transformations. Additionally, the scalability, late-stage modification of drugs, and significant antitumor activity of the products demonstrate the novel spirocyclic synthesis platform for expediting drug development.
Collapse
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Qing Guo
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hui Meng
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shengnan Yan
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Qingjie Ding
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Mooney DT, McKee H, Batch TS, Drane S, Moore PR, Lee AL. Direct C-H amidation of 1,3-azoles: light-mediated, photosensitiser-free vs. thermal. Chem Commun (Camb) 2024; 60:10752-10755. [PMID: 39248036 DOI: 10.1039/d4cc02742f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
We have developed one thermal and one light-mediated method for direct Minisci-type C-H amidation of 1,3-azoles, which are applicable to thiazoles, benzothiazoles, benzimidazoles, and for the first time, imidazoles. The new visible light-mediated approach can be rendered photosensitiser/photocatalyst-free and likely proceeds via an electron donor-acceptor (EDA) complex, the first direct Minisci-type amidation to do so.
Collapse
Affiliation(s)
- David T Mooney
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Heather McKee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Tabea S Batch
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Samuel Drane
- Early Chemical Development, Pharmaceutical Sciences, R&D BioPharmaceuticals, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Peter R Moore
- Early Chemical Development, Pharmaceutical Sciences, R&D BioPharmaceuticals, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Ai-Lan Lee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
4
|
Jaussaud Q, Ogbu IM, Pawar GG, Grau E, Robert F, Vidil T, Landais Y, Cramail H. Synthesis of polyurethanes through the oxidative decarboxylation of oxamic acids: a new gateway toward self-blown foams. Chem Sci 2024; 15:13475-13485. [PMID: 39183929 PMCID: PMC11339942 DOI: 10.1039/d4sc02562h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Polyurethane (PU) thermoplastics and thermosets were prepared through the step-growth polymerization of in situ generated polyisocyanates through the decarboxylation of polyoxamic acids, in the presence of phenyliodine diacetate (PIDA), and polyols. The CO2 produced during the reaction allowed the access to self-blown polyurethane foams through an endogenous chemical blowing. The acetic acid released from ligand exchange at the iodine center was also shown to accelerate the polymerization reaction, avoiding the recourse to an additional catalyst. Changing simple parameters during the production process allowed us to access flexible PU foams with a wide range of properties.
Collapse
Affiliation(s)
- Quentin Jaussaud
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629 16 Avenue Pey-Berland F-33600 Pessac France
| | - Ikechukwu Martin Ogbu
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 351, Cours de la Libération F-33400 Talence France
| | - Govind Goroba Pawar
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 351, Cours de la Libération F-33400 Talence France
| | - Etienne Grau
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629 16 Avenue Pey-Berland F-33600 Pessac France
| | - Frédéric Robert
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 351, Cours de la Libération F-33400 Talence France
| | - Thomas Vidil
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629 16 Avenue Pey-Berland F-33600 Pessac France
| | - Yannick Landais
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 351, Cours de la Libération F-33400 Talence France
| | - Henri Cramail
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629 16 Avenue Pey-Berland F-33600 Pessac France
| |
Collapse
|
5
|
Sun H, Bin X, Zhang Q, Chen X, Tang J, Jiang G. Photochemical radical decarboxylative disulfuration of α-keto acids and oxamic acids. Chem Commun (Camb) 2024; 60:8107-8110. [PMID: 38993176 DOI: 10.1039/d4cc01914h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A visible-light-induced directed decarboxylative disulfuration of α-keto acids and oxamic acids was developed. As a result, a series of versatile mono acyl disulfide derivatives was synthesized under mild and sustainable reaction conditions. This protocol has a broad substrate scope, good functional-group tolerance, and excellent synthetic applications.
Collapse
Affiliation(s)
- Huangbin Sun
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China.
| | - Xueting Bin
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China.
| | - Qianfang Zhang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China.
| | - Xiaowen Chen
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, P. R. China.
| | - Jie Tang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China.
| | - Guofang Jiang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
6
|
Vincent É, Brioche J. Silver-Catalyzed Carbofluorination of Olefins and α-Fluoroolefins with Carbamoyl Radicals. Chemistry 2024; 30:e202401419. [PMID: 38712694 DOI: 10.1002/chem.202401419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
The reactivity of carbamoyl radicals, generated in situ from sodium oxamate salts, has been investigated in the context of radical carbofluorination reactions of olefins and α-fluoroolefins, respectively. Both transformations are catalyzed by silver salts and required the presence of potassium persulfate (K2S2O8) and SelectfluorTM as a radicophilic fluorine source. The reported methods provide a direct access to β-fluoroamides and β,β-difluoroamides.
Collapse
Affiliation(s)
- Émilie Vincent
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Julien Brioche
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| |
Collapse
|
7
|
Reddy CR, Kolgave DH, Fatima S, Ramesh R. Carbonylative cyclization of biaryl enones with aldehydes and oxamic acids. Org Biomol Chem 2024; 22:4901-4911. [PMID: 38832447 DOI: 10.1039/d4ob00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
An oxidative radical-promoted carbonylative cyclization strategy for the synthesis of phenanthren-9-(10H)-one frameworks from biaryl enones using aldehydes as the carbonyl radical sources is disclosed. The reaction proceeds through a sequential addition of a carbonyl radical to the olefin followed by cyclization with an aryl ring. The method is further extended to carbamoyl radicals generated from oxamic acids to access the corresponding phenanthrenones with amide functionalities.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Dattahari H Kolgave
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sana Fatima
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Remya Ramesh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
8
|
Badufle M, Robert F, Landais Y. Visible light mediated iron-catalyzed addition of oxamic acids to imines. RSC Adv 2024; 14:12528-12532. [PMID: 38638815 PMCID: PMC11024671 DOI: 10.1039/d4ra02258k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Oxamic acids where shown to add to imines, providing a broad range of α-aminoacid amides in generally good yields. The process is efficient on pre-formed imines but may also be conducted using a 3-component strategy by simply mixing aldehydes, amines and oxamic acids in the presence of ferrocene, acting both as a photocatalyst under visible light and as a Lewis acid. The reaction proceeds through the addition onto the imine of a carbamoyl radical intermediate generated through a charge transfer from the carboxylate ligand to a Fe(iii) species (LMCT).
Collapse
Affiliation(s)
- Margaux Badufle
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 F-33400 Talence France
| | - Frédéric Robert
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 F-33400 Talence France
| | - Yannick Landais
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 F-33400 Talence France
| |
Collapse
|
9
|
Hutskalova V, Bou Hamdan F, Sparr C. Decarboxylative Nickel- and Photoredox-Catalyzed Aminocarbonylation of (Hetero)Aryl Bromides. Org Lett 2024; 26:2768-2772. [PMID: 37796536 PMCID: PMC11020166 DOI: 10.1021/acs.orglett.3c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 10/06/2023]
Abstract
An efficient methodology for the photoredox- and nickel-catalyzed aminocarbonylation of (hetero)aryl bromides was developed. The utilization of readily available oxamic acids, the application of a broadly used organic photoredox catalyst (4CzIPN), and mild reaction conditions make this transformation an appealing alternative to classical amidation procedures. The generation of carbamoyl radicals was supported by trapping reactions with a hydrogen atom transfer catalyst in the presence of D2O, yielding the deuterated formamide. The generality of this deuteration protocol was confirmed for various oxamic acids.
Collapse
Affiliation(s)
- Valeriia Hutskalova
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Farhan Bou Hamdan
- Syngenta
Crop Protection AG, Crop Protection
Research, Schaffhauserstrasse
101, CH-4332 Stein, Switzerland
| | - Christof Sparr
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Suman P, Tomar K, Nishad CS, Banerjee B. Metal-free synthesis of carbamoylated dihydroquinolinones via cascade radical annulation of cinnamamides with oxamic acids. Org Biomol Chem 2024; 22:1821-1833. [PMID: 38332745 DOI: 10.1039/d3ob01856c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
We report a metal-free procedure for the sustainable synthesis of carbamoylated dihydroquinolinones via tandem addition-cyclization of carbamoyl radicals to cinnamamides. Readily accessible, non-toxic and inexpensive oxamic acids are used as carbamoyl radical precursors. This highly straightforward method provides a mild and environmentally friendly route showing good atom economy and excellent functional group tolerance to obtain diverse medicinally important carbamoylated dihydroquinolinones in one pot. The cascade cyclization is also modular and step-economical with a wide substrate scope and the products were obtained in good to excellent yields. Additionally, the tolerance to air and water, operational simplicity, low cost and scalability enhance the practical value of the proposed synthetic strategy. Preliminary mechanistic studies reveal that cheap and environment-friendly ammonium persulfate acts as a radical initiator in the cascade process and generates carbamoyl radicals from oxamic acids. The synthetic utility of this method is further demonstrated by late stage functionalization of drug molecules with good yields.
Collapse
Affiliation(s)
- Pallav Suman
- Department of Chemistry, Central University of Punjab, Bathinda-151401, India.
| | - Kirti Tomar
- Department of Chemistry, Central University of Punjab, Bathinda-151401, India.
| | | | - Biplab Banerjee
- Department of Chemistry, Central University of Punjab, Bathinda-151401, India.
| |
Collapse
|
11
|
Tang JJ, Zhao MY, Lin YJ, Yang LH, Xie LY. Persulfate-Promoted Carbamoylation/Cyclization of Alkenes: Synthesis of Amide-Containing Quinazolinones. Molecules 2024; 29:997. [PMID: 38474508 DOI: 10.3390/molecules29050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The incorporation of amide groups into biologically active molecules has been proven to be an efficient strategy for drug design and discovery. In this study, we present a simple and practical method for the synthesis of amide-containing quinazolin-4(3H)-ones under transition-metal-free conditions. This is achieved through a carbamoyl-radical-triggered cascade cyclization of N3-alkenyl-tethered quinazolinones. Notably, the carbamoyl radical is generated in situ from the oxidative decarboxylative process of oxamic acids in the presence of (NH4)2S2O8.
Collapse
Affiliation(s)
- Jia-Jun Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Meng-Yang Zhao
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Ying-Jun Lin
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Li-Hua Yang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| |
Collapse
|
12
|
Vega KB, de Oliveira ALC, König B, Paixão MW. Visible-Light-Induced Synthesis of 1,2-Dicarboxyl Compounds from Carbon Dioxide, Carbamoyl-dihydropyridine, and Styrene. Org Lett 2024; 26:860-865. [PMID: 38252019 DOI: 10.1021/acs.orglett.3c04015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
β-Amidated carboxylic acids, or succinamic acid derivatives, constitute a valuable chemical scaffold with broad applications in pharmaceuticals, agrochemicals, and polymer sciences. Herein, we report a redox-neutral multicomponent reaction for the synthesis of succinamic acid derivatives in good yields. This protocol involves styrene, CO2 and 1,4-carbamoyl-dihydropyridine as radical precursors. The method exhibits a broad substrate scope under mild reaction conditions, including late-stage functionalization. Moreover, by employing 13CO2, the method enables the synthesis of labeled 1,2-dicarboxylic compounds.
Collapse
Affiliation(s)
- Kimberly Benedetti Vega
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - André Luiz Carvalho de Oliveira
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Márcio Weber Paixão
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| |
Collapse
|
13
|
He H, Wan Q, Hou ZW, Zhou Q, Wang L. Organoelectrophotocatalytic Generation of Acyl Radicals from Formamides and Aldehydes: Access to Acylated 3-CF 3-2-Oxindoles. Org Lett 2023; 25:7014-7019. [PMID: 37721400 DOI: 10.1021/acs.orglett.3c02607] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Organoelectrophotocatalytic generation of acyl radicals from formamides and aldehydes to synthesize acylated 3-CF3-2-oxindoles has been developed. This protocol features a monocatalytic system using 9,10-phenanthrenequinone (PQ) both as a catalyst and as a hydrogen atom transfer (HAT) reagent, which avoids the use of an external HAT reagent, metal reagent, and oxidant. A variety of acylated 3-CF3-2-oxindoles have been obtained in satisfactory yields from CF3-substituted N-arylacrylamides via a tandem radical cyclization.
Collapse
Affiliation(s)
- Hong He
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Qinhui Wan
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Quan Zhou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
14
|
Kitcatt DM, Scott KA, Rongione E, Nicolle S, Lee AL. Direct decarboxylative Giese amidations: photocatalytic vs. metal- and light-free. Chem Sci 2023; 14:9806-9813. [PMID: 37736650 PMCID: PMC10510818 DOI: 10.1039/d3sc03143h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023] Open
Abstract
A direct intermolecular decarboxylative Giese amidation reaction from bench stable, non-toxic and environmentally benign oxamic acids has been developed, which allows for easy access to 1,4-difunctionalised compounds which are not otherwise readily accessible. Crucially, a more general acceptor substrate scope is now possible, which renders the Giese amidation applicable to more complex substrates such as natural products and chiral building blocks. Two different photocatalytic methods (one via oxidative and the other via reductive quenching cycles) and one metal- and light-free method were developed and the flexibility provided by different conditions proved to be crucial for enabling a more general substrate scope.
Collapse
Affiliation(s)
- David M Kitcatt
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Katie A Scott
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Elena Rongione
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Simon Nicolle
- GlaxoSmithKline Gunnels Wood Rd Stevenage SG1 2NY UK
| | - Ai-Lan Lee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| |
Collapse
|
15
|
Upreti GC, Singh T, Chaudhary D, Singh A. Cascade Cyclizations Triggered by Photochemically Generated Carbamoyl Radicals Derived from Alkyl Amines. J Org Chem 2023; 88:11801-11808. [PMID: 37555769 DOI: 10.1021/acs.joc.3c01090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
We report on a visible light-mediated cascade carbamoylation/cyclization of acrylamides using dihydropyridyl carbamoyl donors derived from alkyl amines. Diversely selected acrylamides including 2-cyano-N-arylacrylamides, indolyl- and benzimidazolyl acrylamides, and 2-alkynyl-N-aryl acrylamides participate in this reaction, providing products in good yields. The highlights of this photochemical method include the application of alkyl amine-derived carbamoyl donors, peroxide-free reaction conditions, and a broad scope.
Collapse
Affiliation(s)
| | - Tavinder Singh
- Department of Chemistry, IIT Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Divakar Chaudhary
- Department of Chemistry, IIT Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Anand Singh
- Department of Chemistry, IIT Kanpur, Kanpur, 208016 Uttar Pradesh, India
- Department of Sustainable Energy Engineering, IIT Kanpur, Kanpur, 208016 Uttar Pradesh, India
| |
Collapse
|
16
|
Ogbu IM, Kurtay G, Badufle M, Robert F, Lopez CS, Landais Y. PIDA-mediated Oxidative Decarboxylation of Oxamic Acids. The Role of Radical Acidity Enhancement. Chemistry 2023; 29:e202202963. [PMID: 36583591 DOI: 10.1002/chem.202202963] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
The PIDA-mediated oxidative decarboxylation of oxamic acids in the presence of alcohols is shown to afford the corresponding urethanes under thermal conditions. Computational and experimental mechanistic exploration allows to rationalize the different reactivity of PIDA as compared to related cyclic BI-OAc and highlights the importance of the enhanced acidity of the proton in the carbamoyl radical intermediate.
Collapse
Affiliation(s)
- Ikechukwu Martin Ogbu
- Institute of Molecular Sciences (ISM), Univ. Bordeaux, CNRS, UMR-5255, 351 Cours de la Libération, 33400, Talence, France
| | - Gülbin Kurtay
- Institute of Molecular Sciences (ISM), Univ. Bordeaux, CNRS, UMR-5255, 351 Cours de la Libération, 33400, Talence, France.,University of Ankara, Department of Chemistry, Faculty of Science, 06800, Ankara, Turkey
| | - Margaux Badufle
- Institute of Molecular Sciences (ISM), Univ. Bordeaux, CNRS, UMR-5255, 351 Cours de la Libération, 33400, Talence, France
| | - Frédéric Robert
- Institute of Molecular Sciences (ISM), Univ. Bordeaux, CNRS, UMR-5255, 351 Cours de la Libération, 33400, Talence, France
| | - Carlos Silva Lopez
- University of Vigo, Campus Universitario As lagoas, Marcosende, 36310, Vigo, Spain
| | - Yannick Landais
- Institute of Molecular Sciences (ISM), Univ. Bordeaux, CNRS, UMR-5255, 351 Cours de la Libération, 33400, Talence, France
| |
Collapse
|
17
|
Liu G, Mu X, Tian M, Wang W, Zou C, Chen Y, Yu M. Metal‐Free, Light‐Mediated, Site‐Specific, Radical C6−H Alkylation of Purines with Alcohols Intervened by Oxalates without Catalysts. European J Org Chem 2023. [DOI: 10.1002/ejoc.202201491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Gang Liu
- School of Chemistry and Materials Science Ludong University Yantai 264025 Shandong Province P. R. China
| | - Xianfeng Mu
- School of Chemistry and Materials Science Ludong University Yantai 264025 Shandong Province P. R. China
| | - Miao Tian
- College of Chemistry and Chemical Engineering Yantai University Yantai 264025 Shandong Province P. R. China
| | - Weili Wang
- School of Chemistry and Materials Science Ludong University Yantai 264025 Shandong Province P. R. China
| | - Chunhui Zou
- School of Chemistry and Materials Science Ludong University Yantai 264025 Shandong Province P. R. China
| | - Yiwen Chen
- School of Chemistry and Materials Science Ludong University Yantai 264025 Shandong Province P. R. China
| | - Mingwu Yu
- School of Chemistry and Materials Science Ludong University Yantai 264025 Shandong Province P. R. China
| |
Collapse
|
18
|
Kim YL, Plank JT, Li B, Lippert AR. Kinetics-Based Quantification of Peroxynitrite Using the Oxidative Decarbonylation of Isatin. Anal Chem 2022; 94:17803-17809. [PMID: 36520991 DOI: 10.1021/acs.analchem.2c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peroxynitrite and its radical decomposition products are highly reactive nitrogen and oxygen species that can influence the balance between health and disease in multiple organ systems. Despite vigorous research activity, real-time quantitative monitoring of peroxynitrite generated by donor compounds remains challenging. Here, we report a kinetics-based fluorescence method for quantitative tracking of peroxynitrite generation using the oxidative decarbonylation of isatin to form anthranilic acid as a fluorescent probe. This method relies on knowledge of the rate of the reaction of peroxynitrite with the probe, which we measure using stopped-flow fluorescence techniques. To the best of our knowledge, this is the first optical method capable of providing real-time quantitative measures of peroxynitrite concentrations generated from donor compounds, as demonstrated herein for SIN-1 and Angeli's salt.
Collapse
Affiliation(s)
- Yujin L Kim
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Joshua T Plank
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Bo Li
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| |
Collapse
|
19
|
Ma C, Tian Y, Wang J, He X, Jiang Y, Yu B. Visible-Light-Driven Transition-Metal-Free Site-Selective Access to Isonicotinamides. Org Lett 2022; 24:8265-8270. [DOI: 10.1021/acs.orglett.2c02949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yu Tian
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Junyan Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xing He
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Bing Yu
- Green Catalysis Centre, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
20
|
Mooney DT, Moore PR, Lee AL. Direct Minisci-Type C–H Amidation of Purine Bases. Org Lett 2022; 24:8008-8013. [PMID: 36285836 PMCID: PMC9641672 DOI: 10.1021/acs.orglett.2c03206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A method for the C–H carboxyamidation of purines
has been
developed that is capable of directly installing primary, secondary,
and tertiary amides. Previous Minisci-type investigations on purines
were limited to alkylations and arylations. Herein, we present the
first method for the direct C–H amidation of a wide range of
purines: xanthine, guanine, and adenine structures, including guanosine-
and adenosine-type nucleosides. The Minisci-type reaction is also
metal-free, cheap, operationally simple, scalable, and applicable
to late-stage functionalizations of biologically important molecules.
Collapse
Affiliation(s)
- David T. Mooney
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, U.K
| | - Peter R. Moore
- Early Chemical Development, Pharmaceutical Sciences, R&D BioPharmaceuticals, AstraZeneca, Macclesfield, SK10 2NA England, U.K
| | - Ai-Lan Lee
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, U.K
| |
Collapse
|