1
|
Tang Y, Fan C, Zang Z, Cheng Y, Li L, Yu X, Yang X, Lu Z, Zhang X, Liu H. Non-metallic surface-modified X-Cu (X = F, Cl, Br) metal catalysts for all-pH hydrogen evolution reaction with high performance. J Colloid Interface Sci 2024; 683:312-321. [PMID: 39681020 DOI: 10.1016/j.jcis.2024.12.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Producing hydrogen through water electrolysis represents a clean and sustainable solution that is crucial in addressing the energy crisis. Nonetheless, the slow process of water electrolysis leads to large different kinetics for hydrogen evolution reaction (HER) under different pH solutions. Here, we designed surface modified metallic X-Cu catalysts (X = F, Cl, Br) with different non-metallic elements on nickel foam (NF) using an electrochemical deposition method, which realizes high performance for all-pH range. In 1.0 M KOH, 1.0 M phosphate-buffered saline (PBS), and 0.5 M H2SO4 media, F-Cu catalyst reaches 10 mA cm-2 with overpotentials of 56 mV, 110 mV, and 197 mV, respectively. Theoretical calculations disclose that the surface modification of F atom leads to redistribution of electrons, causing an upward shift of Cu's d-band center and enhanced adsorption ability for H2O and H intermediates (H*). This work offers novel perspectives for designing Cu-based catalysts with high HER performance, making them applicable across all-pH conditions.
Collapse
Affiliation(s)
- Yao Tang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chunyan Fan
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zehao Zang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yahui Cheng
- Tianjin Key Laboratory of Process Control and Green Technology for Pharmaceutical Industry, Department of Electronics, Nankai University, Tianjin 300350, China
| | - Lanlan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaofei Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaojing Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zunming Lu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xinghua Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Hui Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Zhang M, Hou Y, Jiang Y, Ni X, Wang Y, Zou X. Rational design of water splitting electrocatalysts through computational insights. Chem Commun (Camb) 2024; 60:14521-14536. [PMID: 39576026 DOI: 10.1039/d4cc05117c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Electrocatalytic water splitting is vital for the sustainable production of green hydrogen. Electrocatalysts, including those for the hydrogen evolution reaction at the cathode and the oxygen evolution reaction at the anode, are crucial in determining the overall performance of water splitting. Traditional methods for electrocatalyst development often rely on trial-and-error, which can be time-consuming and inefficient. Recent advancements in computational techniques provide more systematic and predictive strategies for catalyst design. This review article explores the role of computational insights in the development of water-splitting electrocatalysts. We start by giving an introduction of electrocatalytic water splitting mechanisms. Then, fundamental theories such as the Sabatier principle and scaling relationships are reviewed, which provide a theoretical basis for catalytic activity. We also discuss thermodynamic, electronic, and geometric descriptors used to guide catalyst design and provide an in-depth discussion of their applications and limitations. Advanced computational approaches, including high-throughput screening, machine learning, solvation models and Ab initio molecular dynamics, are also highlighted for their ability to accelerate catalyst discovery and simulate realistic reaction conditions. Finally, we propose future research directions aimed at searching universal descriptors, expanding data sets, and integrating developing interpretable models with catalyst design.
Collapse
Affiliation(s)
- Mingcheng Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yuchang Hou
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Yuzhu Jiang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Xinyue Ni
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yanfei Wang
- Petrochina Petrochemical Research Institute, Beijing 102206, China.
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| |
Collapse
|
3
|
Zeng S, Qu D, Sun H, Chen Y, Wang J, Zheng Y, Pan J, Cao J, Li C. Crystalline/Amorphous Interface Engineering and d-sp Orbital Hybridization Synergistically Boosting the Electrocatalytic Performance of PdCu Bimetallene toward Formic Acid-Assisted Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64797-64806. [PMID: 39546761 DOI: 10.1021/acsami.4c14531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Advanced electrocatalysts capable of bifunctional catalysis for formic acid oxidation (FAOR) and hydrogen evolution reaction (HER) have garnered significant attention due to their exceptional energy efficiency. In this research, we have meticulously designed a PdCu bimetallene characterized by numerous crystalline/amorphous (c/a) interfaces and robust d-sp orbital hybridization, achieved by integrating the p-block metalloid boron within the PdCu matrix (B-PdCu-c/a). The B-PdCu-c/a bimetallene revealed a multitude of surface atoms and unsaturated defect sites, offering abundant catalytic active sites and an optimized electronic structure. The B2-PdCu-c/a exhibited the best performance in FAOR and HER, achieving a mass activity of 1106 mA mgcat-1 and an overpotential of 52 mV, respectively. Significantly, the two-electrode configuration of B2-PdCu-c/a∥B2-PdCu-c/a attained a low cell voltage of 0.19 V at 10 mA cm-2 during formic acid-assisted overall water splitting. Density functional theory (DFT) calculations indicated that c/a interface engineering and d-sp orbital hybridization synergistically optimized the electronic configuration of pristine PdCu bimetallene. This led to an elevation of the d-band center and an accumulation of charge at the c/a interface, which enhanced the adsorption of intermediates, facilitated C-H bond cleavage, and balanced the adsorption-desorption of hydrogen, thereby improving electrocatalytic activities for FAOR and HER, respectively. This study not only presents a viable strategy for effectively tuning the electronic configuration of bimetallene but also offers valuable insights into the development of electrocatalysts.
Collapse
Affiliation(s)
- Shuai Zeng
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Dianyi Qu
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Hong Sun
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Yaochi Chen
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Jingjing Wang
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Yingying Zheng
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Jiaqi Pan
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Jun Cao
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Chaorong Li
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| |
Collapse
|
4
|
Liu T, Chen C, Pu Z, Huang Q, Zhang X, Al-Enizi AM, Nafady A, Huang S, Chen D, Mu S. Non-Noble-Metal-Based Electrocatalysts for Acidic Oxygen Evolution Reaction: Recent Progress, Challenges, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405399. [PMID: 39183523 DOI: 10.1002/smll.202405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Indexed: 08/27/2024]
Abstract
The oxygen evolution reaction (OER) plays a pivotal role in diverse renewable energy storage and conversion technologies, including water electrolysis, electrochemical CO2 reduction, nitrogen fixation, and metal-air batteries. Among various water electrolysis techniques, proton exchange membrane (PEM)-based water electrolysis devices offer numerous advantages, including high current densities, exceptional chemical stability, excellent proton conductivity, and high-purity H2. Nevertheless, the prohibitive cost associated with Ir/Ru-based OER electrocatalysts poses a significant barrier to the broad-scale application of PEM-based water splitting. Consequently, it is crucial to advance the development of non-noble metal OER catalysis substance with high acid-activity and stability, thereby fostering their widespread integration into PEM water electrolyzers (PEMWEs). In this review, a comprehensive analysis of the acidic OER mechanism, encompassing the adsorbate evolution mechanism (AEM), lattice oxygen mechanism (LOM) and oxide path mechanism (OPM) is offered. Subsequently, a systematic summary of recently reported noble-metal-free catalysts including transition metal-based, carbon-based and other types of catalysts is provided. Additionally, a comprehensive compilation of in situ/operando characterization techniques is provided, serving as invaluable tools for furnishing experimental evidence to comprehend the catalytic mechanism. Finally, the present challenges and future research directions concerning precious-metal-free acidic OER are comprehensively summarized and discussed in this review.
Collapse
Affiliation(s)
- Tingting Liu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Chen Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Zonghua Pu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shengyun Huang
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
5
|
Weinhardt L, Hauschild D, Wansorra C, Steininger R, Blum M, Yang W, Heske C. Valence-band hybridization in sulphides. Phys Chem Chem Phys 2024; 26:26389-26397. [PMID: 39387819 DOI: 10.1039/d4cp02894e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The hybridization state in solids often defines the critical chemical and physical properties of a compound. However, it is difficult to spectroscopically detect and evaluate hybridization beyond just general fingerprint signatures. Here, the valence-band hybridization of metal d-derived bands (short: "metal d bands") in selected metal sulphides is studied with a combined spectroscopic and theoretical approach to derive deeper insights into the fundamental nature of such compounds. The valence bands of the studied sulphides are comprised of hybrid bands derived from the metal d, S 3s, and S 3p states. Employing S K and L2,3 X-ray emission spectroscopy and spectra calculations based on density functional theory, the degree of hybridization (i.e., the covalency) of these bands can be directly probed as a function of their relative energies. We find that the relative intensity of the "metal d band" features in the spectra scales with the inverse square of the energy separation to the respective sulfur-derived bands, which can be analytically derived from a simple two-orbital model. This study demonstrates that soft X-ray emission spectroscopy is a powerful tool to study valence state hybridization, in particular in combination with hard X-ray emission spectroscopy, promising a broad impact in many research fields.
Collapse
Affiliation(s)
- Lothar Weinhardt
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154-4003, USA
| | - Dirk Hauschild
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154-4003, USA
| | - Constantin Wansorra
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154-4003, USA
| | - Ralph Steininger
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
| | - Monika Blum
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154-4003, USA
- Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Wanli Yang
- Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Clemens Heske
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154-4003, USA
| |
Collapse
|
6
|
Wu ZY, Fu J, Hu JS. Modulating the electronic structure of ion phthalocyanine-based molecular catalysts for electrocatalytic nitrogen reduction: a DFT study. Phys Chem Chem Phys 2024. [PMID: 39041218 DOI: 10.1039/d4cp01373e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The highly localized Fe d orbital in ion phthalocyanine (FePc)-based molecular catalysts significantly hinders their electrocatalytic nitrogen reduction reaction (eNRR) performance. Herein, we theoretically designed a series of FePc-based molecules with adjacent metal phthalocyanine sites to form an asymmetric delocalized electronic structure on Fe centers, promoting the catalytic activity and lowering the overpotential of the eNRR, as well as suppressing the hydrogen evolution reaction (HER) side reaction.
Collapse
Affiliation(s)
- Ze-Yuan Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaju Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Liu Y, Li J, Lv Z, Fan H, Dong F, Wang C, Chen X, Liu R, Tian C, Feng X, Yang W, Wang B. Efficient Proton-exchange Membrane Fuel Cell Performance of Atomic Fe Sites via p-d Hybridization with Al Dopants. J Am Chem Soc 2024; 146:12636-12644. [PMID: 38676645 DOI: 10.1021/jacs.4c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Orbital hybridization to regulate the electronic structures and surface chemisorption properties of transition metals is of great importance for boosting the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs). Herein, we developed a core-shell rambutan-like nanocarbon catalyst (FeAl-RNC) with atomically dispersed Fe-Al atom pairs from metal-organic framework (MOF) material. Experimental and theoretical results demonstrate that the strong p-d orbital hybridization between Al and Fe results in an asymmetric electron distribution with moderate adsorption strength of oxygen intermediates, rendering enhanced intrinsic ORR activity. Additionally, the core-shell rambutan-like structure of FeAl-RNC with abundant micropores and macropores can enhance the density of active sites, stability, and transport pathways in PEMFC. The FeAl-RNC-based PEMFC achieves excellent activity (68.4 mA cm-2 at 0.9 V), high peak power (1.05 W cm-2), and good stability with only 7% current loss after 100 h at 0.7 V under H2-O2 condition.
Collapse
Affiliation(s)
- Yarong Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jiaxin Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zunhang Lv
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Haiyang Fan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Feilong Dong
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Changli Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xianchun Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Rui Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chongao Tian
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Wenxiu Yang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
8
|
Cho J, Medina A, Saih I, Il Choi J, Drexler M, Goddard WA, Alamgir FM, Jang SS. 2D Metal/Graphene and 2D Metal/Graphene/Metal Systems for Electrocatalytic Conversion of CO 2 to Formic Acid. Angew Chem Int Ed Engl 2024; 63:e202320268. [PMID: 38271278 DOI: 10.1002/anie.202320268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
Efficiently transforming CO2 into renewable energy sources is crucial for decarbonization efforts. Formic acid (HCOOH) holds great promise as a hydrogen storage compound due to its high hydrogen density, non-toxicity, and stability under ambient conditions. However, the electrochemical reduction of CO2 (CO2 RR) on conventional carbon black-supported metal catalysts faces challenges such as low stability through dissolution and agglomeration, as well as suffering from high overpotentials and the necessity to overcome the competitive hydrogen evolution reaction (HER). In this study, we modify the physical/chemical properties of metal surfaces by depositing metal monolayers on graphene (M/G) to create highly active and stable electrocatalysts. Strong covalent bonding between graphene and metal is induced by the hybridization of sp and d orbitals, especially the sharpd z 2 ${{d}_{{z}^{2}}}$ ,d y z ${{d}_{yz}}$ , andd x z ${{d}_{xz}}$ orbitals of metals near the Fermi level, playing a decisive role. Moreover, charge polarization on graphene in M/G enables the deposition of another thin metallic film, forming metal/graphene/metal (M/G/M) structures. Finally, evaluating overpotentials required for CO2 reduction to HCOOH, CO, and HER, we find that Pd/G, Pt/G/Ag, and Pt/G/Au exhibit excellent activity and selectivity toward HCOOH production. Our novel 2D hybrid catalyst design methodology may offer insights into enhanced electrochemical reactions through the electronic mixing of metal and other p-block elements.
Collapse
Affiliation(s)
- Jinwon Cho
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| | - Arturo Medina
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| | - Ines Saih
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| | - Ji Il Choi
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| | - Matthew Drexler
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Faisal M Alamgir
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| | - Seung Soon Jang
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| |
Collapse
|
9
|
Noh J, Chang H. Data-Driven Prediction of Configurational Stability of Molecule-Adsorbed Heterogeneous Catalysts. J Chem Inf Model 2023; 63:5981-5995. [PMID: 37715300 DOI: 10.1021/acs.jcim.3c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The design of new heterogeneous catalysts that convert small molecules into valuable chemicals is a key challenge for constructing sustainable energy systems. Density functional theory (DFT)-based design frameworks based on the understanding of molecular adsorption on the catalytic surface have been widely proposed to accelerate experimental approaches to develop novel catalysts. In addition, a machine learning (ML)-combined design framework was recently proposed to further reduce the inherent time cost of DFT-based frameworks. However, because of the lack of prior information on chemical interactions between arbitrary surfaces and adsorbates, the efficacy of the computational screening approaches would be reduced by obtaining unexpected structural anomalies (i.e., abnormally converged surface-adsorbate geometries after the DFT calculations) during an exhaustive exploration of chemical space. To overcome this challenge, we propose an ML framework that directly predicts the configurational stability of a given initial surface-adsorbate geometry. Our benchmark experiments with the Open Catalysts 20 (OC20) dataset show promising performance on classifying stable geometry (i.e., F1-score of 0.922, the area under the receiver operating characteristics (AUROC) of 0.906, and Matthews correlation coefficient (MCC) of 0.633) with a high precision of 0.921 by utilizing an ensemble approach. We further interpret the generalizability and domain applicability of the trained model in terms of the chemical space of the OC20 dataset. Furthermore, from an experiment on the training set size dependence of model performance, we found that our ML model could be practically applicable to classify stable configurations even with a relatively small number of training data.
Collapse
Affiliation(s)
- Juhwan Noh
- Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Hyunju Chang
- Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| |
Collapse
|
10
|
Sun Y, Xie J, Fu Z, Zhang H, Yao Y, Zhou Y, Wang X, Wang S, Gao X, Tang Z, Li S, Wang X, Nie K, Yang Z, Yan Y. Boosting CO 2 Electroreduction to C 2H 4 via Unconventional Hybridization: High-Order Ce 4+ 4f and O 2p Interaction in Ce-Cu 2O for Stabilizing Cu . ACS NANO 2023. [PMID: 37410800 DOI: 10.1021/acsnano.3c03952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Efficient conversion of carbon dioxide (CO2) into value-added materials and feedstocks, powered by renewable electricity, presents a promising strategy to reduce greenhouse gas emissions and close the anthropogenic carbon loop. Recently, there has been intense interest in Cu2O-based catalysts for the CO2 reduction reaction (CO2RR), owing to their capabilities in enhancing C-C coupling. However, the electrochemical instability of Cu+ in Cu2O leads to its inevitable reduction to Cu0, resulting in poor selectivity for C2+ products. Herein, we propose an unconventional and feasible strategy for stabilizing Cu+ through the construction of a Ce4+ 4f-O 2p-Cu+ 3d network structure in Ce-Cu2O. Experimental results and theoretical calculations confirm that the unconventional orbital hybridization near Ef based on the high-order Ce4+ 4f and 2p can more effectively inhibit the leaching of lattice oxygen, thereby stabilizing Cu+ in Ce-Cu2O, compared with traditional d-p hybridization. Compared to pure Cu2O, the Ce-Cu2O catalyst increased the ratio of C2H4/CO by 1.69-fold during the CO2RR at -1.3 V. Furthermore, in situ and ex situ spectroscopic techniques were utilized to track the oxidation valency of copper under CO2RR conditions with time resolution, identifying the well-maintained Cu+ species in the Ce-Cu2O catalyst. This work not only presents an avenue to CO2RR catalyst design involving the high-order 4f and 2p orbital hybridization but also provides deep insights into the metal-oxidation-state-dependent selectivity of catalysts.
Collapse
Affiliation(s)
- Yanfei Sun
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhenzhen Fu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Huiying Zhang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yebo Yao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yixiang Zhou
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaoxuan Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shiyu Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xueying Gao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zheng Tang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shuyuan Li
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaojun Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhiyu Yang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yiming Yan
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
11
|
Wang Y, Meng C, Zhao L, Zhang J, Chen X, Zhou Y. Surface and near-surface engineering design of transition metal catalysts for promoting water splitting. Chem Commun (Camb) 2023. [PMID: 37334928 DOI: 10.1039/d3cc01593a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Transition metal catalysts are widely used in the field of hydrogen production via water electrolysis. The surface state and near-surface environment of the catalysts greatly affect the efficiency of hydrogen production. Therefore, the rational design of surface engineering and near-surface engineering of transition metal catalysts can significantly improve the performance of water electrolysis. This review systematically introduces surface engineering strategies, including heteroatom doping, vacancy engineering, strain regulation, heterojunction effect, and surface reconstruction. These strategies optimize the surface electronic structure of the catalysts, expose more active sites, and promote the formation of highly active species, ultimately enhancing water electrolysis performance. Furthermore, near-surface engineering strategies, such as surface wettability, three-dimensional structure, high-curvature structure, external field assistance, and extra ion addition, are thoroughly discussed. These strategies expedite the mass transfer of reactants and gas products, improve the local chemical environment near the catalyst surface, and contribute toward achieving an industrial-level current density for overall water splitting. Finally, the key challenges faced by surface engineering and near-surface engineering of transition metal catalysts are highlighted and potential solutions are proposed. This review offers essential guidelines for the design and development of efficient transition metal catalysts for water electrolysis.
Collapse
Affiliation(s)
- Yanmin Wang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Chao Meng
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Lei Zhao
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Jialin Zhang
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Xuemin Chen
- College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yue Zhou
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
12
|
Hua Y, Ahmadi Y, Kim KH. Thermocatalytic Degradation of Gaseous Formaldehyde Using Transition Metal-Based Catalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300079. [PMID: 37114840 PMCID: PMC10375094 DOI: 10.1002/advs.202300079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Formaldehyde (HCHO: FA) is one of the most abundant but hazardous gaseous pollutants. Transition metal oxide (TMO)-based thermocatalysts have gained much attention in its removal due to their excellent thermal stability and cost-effectiveness. Herein, a comprehensive review is offered to highlight the current progress in TMO-based thermocatalysts (e.g., manganese, cerium, cobalt, and their composites) in association with the strategies established for catalytic removal of FA. Efforts are hence made to describe the interactive role of key factors (e.g., exposed crystal facets, alkali metal/nitrogen modification, type of precursors, and alkali/acid treatment) governing the catalytic activity of TMO-based thermocatalysts against FA. Their performance has been evaluated further between two distinctive operation conditions (i.e., low versus high temperature) based on computational metrics such as reaction rate. Accordingly, the superiority of TMO-based composite catalysts over mono- and bi-metallic TMO catalysts is evident to reflect the abundant surface oxygen vacancies and enhanced FA adsorptivity of the former group. Finally, the present challenges and future prospects for TMO-based catalysts are discussed with respect to the catalytic oxidation of FA. This review is expected to offer valuable information to design and build high performance catalysts for the efficient degradation of volatile organic compounds.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea
| |
Collapse
|
13
|
Li Y, Li Z, Lin X, Lv H, Zhu M. Modulating the metal center in MIL-101 for the piezoelectric catalytic synthesis of hydrogen peroxide. Chem Commun (Camb) 2023; 59:5749-5752. [PMID: 37092710 DOI: 10.1039/d3cc01196h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Modulation of metal centers is a promising strategy to boost catalytic performance. Two structurally identical MOFs with different metal centers, namely MIL-101(Cr) and MIL-101(Fe), were synthesized. MIL-101(Cr) exhibits superior H2O2 yield due to Cr's electron-donating ability. This work helps in developing the rational design and optimization of MOF catalysts for catalytic reactions.
Collapse
Affiliation(s)
- Yatai Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Xuecong Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Hao Lv
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
14
|
Song K, Guo K, Mao S, Ma D, Lv Y, He C, Wang H, Cheng Y, Shi JW. Insight into the Origin of Excellent SO 2 Tolerance and de-NO x Performance of quasi-Mn-BTC in the Low-Temperature Catalytic Reduction of Nitrogen Oxide. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
15
|
Giulimondi V, Mitchell S, Pérez-Ramírez J. Challenges and Opportunities in Engineering the Electronic Structure of Single-Atom Catalysts. ACS Catal 2023; 13:2981-2997. [PMID: 36910873 PMCID: PMC9990067 DOI: 10.1021/acscatal.2c05992] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 02/16/2023]
Abstract
Controlling the electronic structure of transition-metal single-atom heterogeneous catalysts (SACs) is crucial to unlocking their full potential. The ability to do this with increasing precision offers a rational strategy to optimize processes associated with the adsorption and activation of reactive intermediates, charge transfer dynamics, and light absorption. While several methods have been proposed to alter the electronic characteristics of SACs, such as the oxidation state, band structure, orbital occupancy, and associated spin, the lack of a systematic approach to their application makes it difficult to control their effects. In this Perspective, we examine how the electronic configuration of SACs can be engineered for thermochemical, electrochemical, and photochemical applications, exploring the relationship with their activity, selectivity, and stability. We discuss synthetic and analytical challenges in controlling and discriminating the electronic structure of SACs and possible directions toward closing the gap between computational and experimental efforts. By bringing this topic to the center, we hope to stimulate research to understand, control, and exploit electronic effects in SACs and ultimately spur technological developments.
Collapse
Affiliation(s)
- Vera Giulimondi
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
16
|
Yankova R, Tankov I, Tsaneva T. Crystal structure, intermolecular interactions and NLO properties for imidazolium hydrogen sulfate ionic liquid. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Song K, Guo K, Lv Y, Ma D, Cheng Y, Shi JW. Rational Regulation of Reducibility and Acid Site on Mn-Fe-BTC to Achieve High Low-Temperature Catalytic Denitration Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4132-4143. [PMID: 36631929 DOI: 10.1021/acsami.2c20545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Selective catalytic reduction with ammonia is the mainstream technology of flue gas denitration (de-NOx). The reducibility and acid site are two important factors affecting the de-NOx performance, and effective regulation between them is the key to obtain a highly efficient de-NOx catalyst. Herein, a series of Mn-Fe-BTC with different ratios of Mn and Fe are synthesized, among which 2Mn-1Fe-BTC with 2:1 molar ratio of Mn and Fe has excellent low-temperature (LT) de-NOx performance (above 90% NO conversion between 60 and 270 °C) and good tolerance to H2O and SO2 poisoning (88% NO conversion at 150 °C with 100 ppm of SO2 and/or 6% H2O). It is revealed that the reducibility properties and acid sites of Mn-Fe-BTC can be flexibly tuned by the ratio of Mn and Fe. The difference in electronegativity between Fe and Mn leads to the redistribution of valence electrons, which enables the controllable reducibility of Mn-Fe-BTC. Furthermore, different amounts of Mn and Fe lead to different electron transport, which determines the type and number of acid sites. The synergistic effect of Mn and Fe endows Mn-Fe-BTC with enhanced surface molecular adsorption capacity and enables the catalyst to selectively chemisorb NH3 and NO at different active sites. This research provides guidance for the flexible regulation of reducibility and acid site of LT de-NOx catalyst.
Collapse
Affiliation(s)
- Kunli Song
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kaiyu Guo
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yixuan Lv
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dandan Ma
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
18
|
Liu J, Zhang G, Ye K, Xu K, Sheng Y, Yu C, Zhang H, Li Q, Liang Z, Jiang K. Top-down manufacturing of efficient CO 2 reduction catalysts from the gasification residue carbon. Chem Commun (Camb) 2023; 59:611-614. [PMID: 36533577 DOI: 10.1039/d2cc05081a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gram scale preparation of carbon-supported single-atom catalysts was achieved via a top-down approach starting from metallic and metalloid constituent-enriched gasification residual carbon, exhibiting superior electrocatalytic performance for CO2-to-CO conversion in both H-type and membrane electrode assembly electrolyzers.
Collapse
Affiliation(s)
- Jun Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China. .,Interdisciplinary Research Centre, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Guiru Zhang
- Interdisciplinary Research Centre, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ke Ye
- Interdisciplinary Research Centre, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ke Xu
- Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China
| | - Yeliang Sheng
- Laboratory of Energy Chemical Engineering, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Can Yu
- Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
| | - Hai Zhang
- Interdisciplinary Research Centre, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qiaoxia Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Zheng Liang
- Laboratory of Energy Chemical Engineering, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Kun Jiang
- Interdisciplinary Research Centre, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
19
|
Li H, Shen Y, Xiao X, Jiang H, Gu Q, Zhang Y, Lin L, Luo W, Zhou S, Zhao J, Wang A, Zhang T, Yang B. Controlled-Release Mechanism Regulates Rhodium Migration and Size Redistribution Boosting Catalytic Methane Conversion. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hong Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Yuebo Shen
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Dalian116024, China
| | - Xia Xiao
- Institute of Catalysis for Energy and Environment, Shenyang Normal University, Shenyang110034, China
| | - Hong Jiang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Dalian116024, China
| | - Qingqing Gu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Yafeng Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Lu Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Wenhao Luo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Si Zhou
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Dalian116024, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Dalian116024, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| |
Collapse
|
20
|
Zhang H, Jin X, Lee JM, Wang X. Tailoring of Active Sites from Single to Dual Atom Sites for Highly Efficient Electrocatalysis. ACS NANO 2022; 16:17572-17592. [PMID: 36331385 PMCID: PMC9706812 DOI: 10.1021/acsnano.2c06827] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/01/2022] [Indexed: 05/27/2023]
Abstract
Single atom catalysts (SACs) have been attracting extensive attention in electrocatalysis because of their unusual structure and extreme atom utilization, but the low metal loading and unified single site induced scaling relations may limit their activity and practical application. Tailoring of active sites at the atomic level is a sensible approach to break the existing limits in SACs. In this review, SACs were first discussed regarding carbon or non-carbon supports. Then, five tailoring strategies were elaborated toward improving the electrocatalytic activity of SACs, namely strain engineering, spin-state tuning engineering, axial functionalization engineering, ligand engineering, and porosity engineering, so as to optimize the electronic state of active sites, tune d orbitals of transition metals, adjust adsorption strength of intermediates, enhance electron transfer, and elevate mass transport efficiency. Afterward, from the angle of inducing electron redistribution and optimizing the adsorption nature of active centers, the synergistic effect from adjacent atoms and recent advances in tailoring strategies on active sites with binuclear configuration which include simple, homonuclear, and heteronuclear dual atom catalysts (DACs) were summarized. Finally, a summary and some perspectives for achieving efficient and sustainable electrocatalysis were presented based on tailoring strategies, design of active sites, and in situ characterization.
Collapse
Affiliation(s)
- Hongwei Zhang
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge
Centre for Advanced Research and Education in Singapore Ltd (Cambridge
CARES), CREATE Tower, Singapore 138602, Singapore
| | - Xindie Jin
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Jong-Min Lee
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xin Wang
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge
Centre for Advanced Research and Education in Singapore Ltd (Cambridge
CARES), CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
21
|
Li H, Qin X, Zhang XG, Jiang K, Cai WB. Boron-Doped Platinum-Group Metals in Electrocatalysis: A Perspective. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hong Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai200438, People’s Republic of China
| | - Xianxian Qin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai200438, People’s Republic of China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang453007, People’s Republic of China
| | - Kun Jiang
- Interdisciplinary Science Research Center, Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai200438, People’s Republic of China
| |
Collapse
|