1
|
Lee LC, Lo KK. Leveraging the Photofunctions of Transition Metal Complexes for the Design of Innovative Phototherapeutics. SMALL METHODS 2024; 8:e2400563. [PMID: 39319499 PMCID: PMC11579581 DOI: 10.1002/smtd.202400563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/03/2024] [Indexed: 09/26/2024]
Abstract
Despite the advent of various medical interventions for cancer treatment, the disease continues to pose a formidable global health challenge, necessitating the development of new therapeutic approaches for more effective treatment outcomes. Photodynamic therapy (PDT), which utilizes light to activate a photosensitizer to produce cytotoxic reactive oxygen species (ROS) for eradicating cancer cells, has emerged as a promising approach for cancer treatment due to its high spatiotemporal precision and minimal invasiveness. However, the widespread clinical use of PDT faces several challenges, including the inefficient production of ROS in the hypoxic tumor microenvironment, the limited penetration depth of light in biological tissues, and the inadequate accumulation of photosensitizers at the tumor site. Over the past decade, there has been increasing interest in the utilization of photofunctional transition metal complexes as photosensitizers for PDT applications due to their intriguing photophysical and photochemical properties. This review provides an overview of the current design strategies used in the development of transition metal complexes as innovative phototherapeutics, aiming to address the limitations associated with PDT and achieve more effective treatment outcomes. The current challenges and future perspectives on the clinical translation of transition metal complexes are also discussed.
Collapse
Affiliation(s)
- Lawrence Cho‐Cheung Lee
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| | - Kenneth Kam‐Wing Lo
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| |
Collapse
|
2
|
Walter ERH, Leung PKK, Lee LCC, Lo KKW, Long NJ. Potent BODIPY-based photosensitisers for selective mitochondrial dysfunction and effective photodynamic therapy. J Mater Chem B 2024; 12:10409-10415. [PMID: 39297339 DOI: 10.1039/d4tb01609b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
The development of new and improved mitochondria-targeting photosensitisers (PSs) for photodynamic therapy (PDT) remains highly desirable, due to the critical role the mitochondria play in maintaining healthy cellular function. Here, we report the design, synthesis, photophysical properties and biological characterisation of a series of di-iodinated BODIPY-based PSs, BODIPY-Mito-I-n, for mitochondria-targeted PDT applications. Six BODIPY-Mito-I-n analogues were synthesised in good yields, with fast reaction times of between 30 and 60 min under mild conditions. The di-iodination of the BODIPY scaffold enabled highly efficient population of the triplet state, leading to high singlet oxygen (1O2) photosensitisation efficiencies (ΦΔ = 0.55-0.65). All BODIPY-Mito-I-n compounds exhibited very high photocytotoxic activity towards HeLa cells, with IC50,light values of between 1.30 and 6.93 nM, due to photoinduced 1O2 generation. Notably, the poly(ethylene glycol) (PEG)-modified BODIPY-Mito-I-6 showed remarkably lower dark cytotoxicity (IC50,dark = 6.68-7.25 μM) than the non-PEGylated analogues BODIPY-Mito-I-1 to BODIPY-Mito-I-5 (IC50,dark = 0.58-1.09 μM), resulting in photocytotoxicity indices up to 2120. Mechanistic studies revealed that BODIPY-Mito-I-6 induced reactive oxygen species overproduction and mitochondrial dysfunction in cells upon irradiation, leading to significant cell death through a combination of apoptosis and necrosis. It is anticipated that our design will contribute to the development of more effective mitochondria-targeting PSs for cancer therapy.
Collapse
Affiliation(s)
- Edward R H Walter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, W12 0BZ, UK.
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Peter Kam-Keung Leung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
- State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Lawrence Cho-Cheung Lee
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
- State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Nicholas J Long
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, W12 0BZ, UK.
| |
Collapse
|
3
|
Sahin C, Mutlu D, Erdem A, Kilincarslan R, Arslan S. New cyclometalated iridium(III) complexes bearing substituted 2-(1H-benzimidazol-2-yl)quinoline: Synthesis, characterization, electrochemical and anticancer studies. Bioorg Chem 2024; 151:107706. [PMID: 39128244 DOI: 10.1016/j.bioorg.2024.107706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
New iridium(III) compounds (C1-C3) bearing 2-(1H-benzimidazol-2-yl)quinoline ligands with different side groups (benzyl, 2,3,4,5,6-pentamethylbenzyl and 2,3,4,5,6-pentafluorobenzyl) were synthesized and characterized by using spectroscopic analyses. The effects of different side groups of iridium compounds on the photophysical and electrochemical properties have been investigated. The cytotoxicity and apoptosis of the compounds have been evaluated on breast cancer cell lines using various methods including MTT assay, flow cytometry, qRT-PCR, and colony formation. The cytotoxicity of C1, expressed as IC50 values, was found to be 11.76 μM for MDA-MB-231 and 5.35 μM for MCF-7 cells. For C3, the IC50 value was 16.22 μM for MDA-MB-231 and 8.85 μM for MCF-7 cells. In both cell lines, increased levels of Bax and caspase 3, along with downregulation of BCL-2 and positive annexin V staining, were observed, confirming apoptosis. Moreover, the colony-forming abilities in both cell lines decreased after C1 and C3 complex treatment. All these results suggest that the compounds C1 and C3 may have potential in the treatment of breast cancer, though further research is needed to confirm their efficacy.
Collapse
Affiliation(s)
- Cigdem Sahin
- Department of Engineering Basic Sciences, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, Turkey.
| | - Dogukan Mutlu
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Turkey.
| | - Ahmet Erdem
- Advanced Technology Application and Research Center, Pamukkale University, Denizli, Turkey
| | - Rafet Kilincarslan
- Department of Chemistry, Faculty of Science, Pamukkale University, Denizli, Turkey.
| | - Sevki Arslan
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Turkey
| |
Collapse
|
4
|
Mak ECL, Chen Z, Lee LCC, Leung PKK, Yip AMH, Shum J, Yiu SM, Yam VWW, Lo KKW. Exploiting the Potential of Iridium(III) bis-Nitrone Complexes as Phosphorogenic Bifunctional Reagents for Phototheranostics. J Am Chem Soc 2024; 146:25589-25599. [PMID: 39248725 DOI: 10.1021/jacs.4c07251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Cross-linking strategies have found wide applications in chemical biology, enabling the labeling of biomolecules and monitoring of protein-protein interactions. Nitrone exhibits remarkable versatility and applicability in bioorthogonal labeling due to its high reactivity with strained alkynes via the strain-promoted alkyne-nitrone cycloaddition (SPANC) reaction. In this work, four cyclometalated iridium(III) polypyridine complexes functionalized with two nitrone units were designed as novel phosphorogenic bioorthogonal reagents for bioimaging and phototherapeutics. The complexes showed efficient emission quenching, which is attributed to an efficient nonradiative decay pathway via the low-lying T1/S0 minimum energy crossing point (MECP), as revealed by computational studies. However, the complexes displayed significant emission enhancement and lifetime extension upon reaction with (1R,8S,9s)-bicyclo[6.1.0]non-4-yne (BCN) derivatives. In particular, they showed a remarkably higher reaction rate toward a bis-cyclooctyne derivative (bis-BCN) compared with its monomeric counterpart (mono-BCN). Live-cell imaging and (photo)cytotoxicity studies revealed higher photocytotoxicity in bis-BCN-pretreated cells, which is ascribed to the enhanced singlet oxygen (1O2) photosensitization resulting from the elimination of the nitrone-associated quenching pathway. Importantly, the cross-linking properties and enhanced reactivity of the complexes make them highly promising candidates for the development of hydrogels and stapled/cyclized peptides, offering intriguing photophysical, photochemical, and biological properties. Notably, a nanosized hydrogel (2-gel) demonstrated potential as a drug delivery system, while a stapled peptide (2-bis-pDIKK) exhibited p53-Mdm2 inhibitory activity related to apoptosis and a cyclized peptide (2-bis-RGD) showed cancer selectivity.
Collapse
Affiliation(s)
- Eunice Chiu-Lam Mak
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Ziyong Chen
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Peter Kam-Keung Leung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Alex Man-Hei Yip
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Justin Shum
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
5
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
6
|
Huang L, Lee LCC, Shum J, Xu GX, Lo KKW. Construction of photofunctional peptide conjugates through selective modification of N-terminal cysteine with cyclometallated iridium(III) 2-formylphenylboronic acid complexes for organelle-specific imaging, enzyme activity sensing and photodynamic therapy. Chem Commun (Camb) 2024; 60:6186-6189. [PMID: 38805236 DOI: 10.1039/d4cc01824a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Luminescent cyclometallated iridium(III) complexes bearing a 2-formylphenylboronic acid moiety were designed; one of the complexes was utilised to modify peptides containing an N-terminal cysteine to afford luminescent conjugates with selective organelle-targeting or furin-responsive properties.
Collapse
Affiliation(s)
- Lili Huang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | - Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Justin Shum
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | - Guang-Xi Xu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
- State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
7
|
Xu K, Zheng L, Bao SS, Ma J, Xie X, Zheng LM. Lanthanide-Sensitized Upconversion Iridium Complex via Triplet Energy Transfer. SMALL METHODS 2024:e2400671. [PMID: 38803310 DOI: 10.1002/smtd.202400671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Cyclometalated iridium (Ir) complexes demonstrate impressive capabilities across a range of fields, including biology and photocatalysis, due to their tunable optical characteristics and structure flexibility. However, generating upconversion luminescence of Ir complexes under near-infrared light excitation is challenging. Herein, by employing lanthanide-doped upconversion nanoparticles (UCNPs) as the sensitizer, a new strategy is demonstrated to gain upconversion luminescence of Ir complexes via triplet energy transfer. This design relies on a rationally designed hybrid of core-shell structured NaYbF4:Tb@NaTbF4 UCNPs and new Ir phosphonate complexes, in which UCNPs can migrate upconverted energy to the surface of nanoparticles through Tb3+-mediated energy migration and then sensitize the upconversion luminescence of Ir complexes upon 980 nm excitation. Both experimental and theoretical investigations highlight the significance of triplet energy transfer from excited Tb3+ ions to the triplet state of Ir complexes in the sensitization of upconversion luminescence of Ir complexes. These findings may open exciting avenues for fabricating hybrid Ir materials with new functions and driving the development of UCNP-based nanomaterials.
Collapse
Affiliation(s)
- Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Lifeng Zheng
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Jing Ma
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaoji Xie
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
8
|
Jing S, Wu X, Niu D, Wang J, Leung CH, Wang W. Recent Advances in Organometallic NIR Iridium(III) Complexes for Detection and Therapy. Molecules 2024; 29:256. [PMID: 38202839 PMCID: PMC10780525 DOI: 10.3390/molecules29010256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Iridium(III) complexes are emerging as a promising tool in the area of detection and therapy due to their prominent photophysical properties, including higher photostability, tunable phosphorescence emission, long-lasting phosphorescence, and high quantum yields. In recent years, much effort has been devoted to develop novel near-infrared (NIR) iridium(III) complexes to improve signal-to-noise ratio and enhance tissue penetration. In this review, we summarize different classes of organometallic NIR iridium(III) complexes for detection and therapy, including cyclometalated ligand-enabled NIR iridium(III) complexes and NIR-dye-conjugated iridium(III) complexes. Moreover, the prospects and challenges for organometallic NIR iridium(III) complexes for targeted detection and therapy are discussed.
Collapse
Affiliation(s)
- Shaozhen Jing
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Xiaolei Wu
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Dou Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
| | - Jing Wang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
- Macao Centre for Research and Development in Chinese Medicine, University of Macau, Taipa, Macau 999078, China
- MoE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Wanhe Wang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| |
Collapse
|
9
|
Li XL, Zeng LZ, Yang R, Bi XD, Zhang Y, Cui RB, Wu XX, Gao F. Iridium(III)-Based Infrared Two-Photon Photosensitizers: Systematic Regulation of Their Photodynamic Therapy Efficacy. Inorg Chem 2023; 62:16122-16130. [PMID: 37717260 DOI: 10.1021/acs.inorgchem.3c02364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Cyclometalated iridium(III) complexes are of significant importance in the field of antitumor photodynamic therapy (PDT), whether they exist as single molecules or are incorporated into nanomaterials. Nevertheless, a comprehensive examination of the relationship between their molecular structure and PDT effectiveness remains awaited. The influencing factors of two-photon excited PDT can be anticipated to be further multiplied, particularly in relation to intricate nonlinear optical properties. At present, a comprehensive body of research on this topic is lacking, and few discernible patterns have been identified. In this study, through systematic structure regulation, the nitro-substituted styryl group and 1-phenylisoquinoline ligand containing YQ2 was found to be the most potent infrared two-photon excitable photosensitizer in a 4 × 3 combination library of cyclometalated Ir(III) complexes. YQ2 could enter cells via an energy-dependent and caveolae-mediated pathway, bind specifically to mitochondria, produce 1O2 in response to 808 nm LPL irradiation, activate caspases, and induce apoptosis. In vitro, YQ2 displayed a remarkable phototherapy index for both malignant melanoma (>885) and non-small-cell lung cancer (>1234) based on these functions and was minimally deleterious to human normal liver and kidney cells. In in vivo antitumor phototherapy, YQ2 inhibited tumor growth by an impressive 85% and could be eliminated from the bodies of mice with a half-life as short as 43 h. This study has the potential to contribute significantly to the development of phototherapeutic drugs that are extremely effective in treating large, profoundly located solid tumors as well as the understanding of the structure-activity relationship of Ir(III)-based PSs in PDT.
Collapse
Affiliation(s)
- Xue-Lian Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Li-Zhen Zeng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Rong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Xu-Dan Bi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Yang Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Ruo-Bing Cui
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Xin-Xi Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Feng Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
10
|
Hua L, Zhang KY, Liu HW, Chan KS, Lo KKW. Luminescent iridium(III) porphyrin complexes as near-infrared-emissive biological probes. Dalton Trans 2023; 52:12444-12453. [PMID: 37594412 DOI: 10.1039/d3dt02104a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
We report herein the design, synthesis and characterisation of a series of luminescent iridium(III) porphyrin complexes [Ir(ttp)(CH2CH2OH)] (H2ttp = 5,10,15,20-tetra-4-tolylporphyrin) (1), [Ir(tpp-Ph-NO2)(CO)Cl] (H2tpp-Ph-NO2 = 5-(4-((4-nitrophenoxy)carbonyloxymethyl)phenyl)-10,15,20-triphenylporphyrin) (2), [Ir(tpp-COOMe)(Py)2](Cl) (H2tpp-COOMe = 5-(4-methoxycarbonylphenyl)-10,15,20-triphenylporphyrin; Py = pyridine) (3) and [Ir(tpp-COOH)(Py)2](Cl) (H2tpp-COOH = 5-(4-carboxylphenyl)-10,15,20-triphenylporphyrin) (4). All the complexes displayed long-lived near-infrared (NIR) emission attributed to an excited state of mixed triplet intraligand (3IL) (π → π*) (porphyrin) and triplet metal-to-ligand charge transfer (3MLCT) (dπ(Ir) → π*(porphyrin)) character. The cytotoxicity of the complexes toward HeLa cells was examined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cationic complexes 3 and 4 exhibited higher cytotoxic activity toward HeLa cells than their neutral counterparts 1 and 2. Cellular uptake studies by inductively coupled plasma-mass spectrometry (ICP-MS) and laser-scanning confocal microscopy (LSCM) indicated that complexes 3 and 4 showed higher cellular uptake efficiencies than complexes 1 and 2 due to their cationic charge, and they were enriched in the perinuclear region of the cells with negligible nuclear uptake. Additionally, the carboxyl complex 4 was used to label a model protein bovine serum albumin (BSA) via an amidation reaction. The resultant luminescent protein conjugate 4-BSA displayed similar photophysical properties and intracellular localisation behaviour to its parent complex. The results of this work will contribute to the development of luminescent iridium(III) porphyrin complexes and related bioconjugates as NIR-emissive probes for bioimaging applications.
Collapse
Affiliation(s)
- Lijuan Hua
- Department of Chemistry, Bengbu Medical College, Donghai Avenue, Bengbu, Anhui, 233030, P. R. China.
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Kenneth Yin Zhang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Hua-Wei Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Kin-Shing Chan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| |
Collapse
|