1
|
Gulyaeva ES, Osipova ES, Kovalenko SA, Filippov OA, Belkova NV, Vendier L, Canac Y, Shubina ES, Valyaev DA. Two active species from a single metal halide precursor: a case study of highly productive Mn-catalyzed dehydrogenation of amine-boranes via intermolecular bimetallic cooperation. Chem Sci 2024; 15:1409-1417. [PMID: 38274083 PMCID: PMC10806649 DOI: 10.1039/d3sc05356c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Metal-metal cooperation for inert bond activation is a ubiquitous concept in coordination chemistry and catalysis. While the great majority of such transformations proceed via intramolecular mode in binuclear complexes, to date only a few examples of intermolecular small molecule activation using usually bimetallic frustrated Lewis pairs (Mδ+⋯M'δ-) have been reported. We introduce herein an alternative approach for the intermolecular bimetallic cooperativity observed in the catalytic dehydrogenation of amine-boranes, in which the concomitant activation of N-H and B-H bonds of the substrate via the synergetic action of Lewis acidic (M+) and basic hydride (M-H) metal species derived from the same mononuclear complex (M-Br). It was also demonstrated that this system generated in situ from the air-stable Mn(i) complex fac-[(CO)3(bis(NHC))MnBr] and NaBPh4 shows high activity for H2 production from several substrates (Me2NHBH3, tBuNH2BH3, MeNH2BH3, NH3BH3) at low catalyst loading (0.1% to 50 ppm), providing outstanding efficiency for Me2NHBH3 (TON up to 18 200) that is largely superior to all known 3d-, s-, p-, f-block metal derivatives and frustrated Lewis pairs (FLPs). These results represent a step forward towards more extensive use of intermolecular bimetallic cooperation concepts in modern homogeneous catalysis.
Collapse
Affiliation(s)
- Ekaterina S Gulyaeva
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 Route de Narbonne 31077 Toulouse Cedex 4 France
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Elena S Osipova
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Sergey A Kovalenko
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Oleg A Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Natalia V Belkova
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 Route de Narbonne 31077 Toulouse Cedex 4 France
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 Route de Narbonne 31077 Toulouse Cedex 4 France
| | - Elena S Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 Route de Narbonne 31077 Toulouse Cedex 4 France
| |
Collapse
|
2
|
Ward RJ, Rungthanaphatsophon P, Huang P, Kelley SP, Walensky JR. Cooperative dihydrogen activation with unsupported uranium-metal bonds and characterization of a terminal U(iv) hydride. Chem Sci 2023; 14:12255-12263. [PMID: 37969582 PMCID: PMC10631237 DOI: 10.1039/d3sc04857h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023] Open
Abstract
Cooperative chemistry between two or more metal centres can show enhanced reactivity compared to the monometallic fragments. Given the paucity of actinide-metal bonds, especially those with group 13, we targeted uranium(iii)-aluminum(i) and -gallium(i) complexes as we envisioned the low-valent oxidation state of both metals would lead to novel, cooperative reactivity. Herein, we report the molecular structure of [(C5Me5)2(MesO)U-E(C5Me5)], E = Al, Ga, Mes = 2,4,6-Me3C6H2, and their reactivity with dihydrogen. The reaction of H2 with the U(iii)-Al(i) complex affords a trihydroaluminate complex, [(C5Me5)2(MesO)U(μ2-(H)3)-Al(C5Me5)] through a formal three-electron metal-based reduction, with concomitant formation of a terminal U(iv) hydride, [(C5Me5)2(MesO)U(H)]. Noteworthy is that neither U(iii) complexes nor [(C5Me5)Al]4 are capable of reducing dihydrogen on their own. To make the terminal hydride in higher yields, the reaction of [(C5Me5)2(MesO)U(THF)] with half an equivalent of diethylzinc generates [(C5Me5)2(MesO)U(CH2CH3)] or treatment of [(C5Me5)2U(i)(Me)] with KOMes forms [(C5Me5)2(MesO)U(CH3)], which followed by hydrogenation with either complex cleanly affords [(C5Me5)2(MesO)U(H)]. All complexes have been characterized by spectroscopic and structural methods and are rare examples of cooperative chemistry in f element chemistry, dihydrogen activation, and stable, terminal ethyl and hydride compounds with an f element.
Collapse
Affiliation(s)
- Robert J Ward
- Department of Chemistry, University of Missouri Columbia MO 65211 USA
| | | | - Patrick Huang
- Department of Chemistry & Biochemistry, California State University East Bay Hayward CA 94542 USA
| | - Steven P Kelley
- Department of Chemistry, University of Missouri Columbia MO 65211 USA
| | - Justin R Walensky
- Department of Chemistry, University of Missouri Columbia MO 65211 USA
| |
Collapse
|
3
|
Dolatyari V, Shahsavari HR, Fereidoonnezhad M, Farhadi F, Akhlaghi S, Latouche C, Sakamaki Y, Beyzavi H. Luminescent Heterobimetallic Pt II-Au I Complexes Bearing N-Heterocyclic Carbenes (NHCs) as Potent Anticancer Agents. Inorg Chem 2023; 62:13241-13252. [PMID: 37550287 DOI: 10.1021/acs.inorgchem.3c01504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
This study aims to probe into new series of heterobimetallic PtII-AuI complexes with a general formula of [Pt(p-MeC6H4)(dfppy)(μ-dppm)Au(NHC)]OTf, NHC = IPr, 2; IMes, 3; dfppy = 2-(2,4-difluorophenyl)pyridinate; dppm = 1,1-bis(diphenylphosphino)methane, which are the resultant of the reaction between [Pt(p-MeC6H4)(dfppy)(κ1-dppm)], 1, with [AuCl(NHC)], NHC = IPr, B; IMes, C, in the presence of [Ag(OTf)]. In the heterobimetallic complexes, the dppm ligand is settled between both metals as an unsymmetrical bridging ligand. Several techniques are employed to characterize the resulting compounds. Moreover, the photophysical properties of the complexes are investigated by means of UV-vis and photoluminescence spectroscopy. Furthermore, the experimental study is enriched by ab initio calculations (density functional theory (DFT) and time-dependent DFT (TD-DFT)) to assess the role of Pt and Au moieties in the observed optical properties. It is revealed that 1-3 is luminescent in the solid state and solution at different temperatures. In addition, the achieved results indicate the emissive properties of 1-3 are originated from a mixed 3IL/3MLCT excited state with major contribution of intraligand charge transfer (dfppy). A comparative study is conducted into the cytotoxic activities of starting materials and 1-3 against different human cancer cell lines such as the pancreas (MIA-PaCa2), breast (MDA-MB-231), cervix (HeLa), and noncancerous breast epithelial cell line (MCF-10A). The achieved results suggest the heterobimetallic PtII-AuI species as optimal compounds that signify the existence of cooperative and synergistic effects in their structures. The complex 3 is considered as the most cytotoxic compound with the maximum selectivity index in our screened complex series. Moreover, it is disclosed that 3 effectively causes cell death by inducing apoptosis in MIA-PaCa2 cells. Furthermore, the finding results by fluorescent cell microscopy manifest cytoplasmic staining of 3 rather than nucleus.
Collapse
Affiliation(s)
- Vahideh Dolatyari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Hamid R Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Masood Fereidoonnezhad
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Fahimeh Farhadi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Shiva Akhlaghi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Camille Latouche
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, F-44000 Nantes, France
| | - Yoshie Sakamaki
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Hudson Beyzavi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
4
|
Alférez MG, Moreno JJ, Maya C, Campos J. Polarized Au(I)/Rh(I) bimetallic pairs cooperatively trigger ligand non-innocence and bond activation. Dalton Trans 2023; 52:3835-3845. [PMID: 36866716 PMCID: PMC10029337 DOI: 10.1039/d3dt00410d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
The combination of molecular metallic fragments of contrasting Lewis character offers many possibilities for cooperative bond activation and for the disclosure of unusual reactivity. Here we provide a systematic investigation on the partnership of Lewis basic Rh(I) compounds of type [(η5-L)Rh(PR3)2] (η5-L = (C5Me5)- or (C9H7)-) with highly congested Lewis acidic Au(I) species. For the cyclopentadienyl Rh(I) compounds, we demonstrate the non-innocent role of the typically robust (C5Me5)- ligand through migration of a hydride to the Rh site and provide evidence for the direct implication of the gold fragment in this unusual bimetallic ligand activation event. This process competes with the formation of dinuclear Lewis adducts defined by a dative Rh → Au bond, with selectivity being under kinetic control and tunable by modifying the stereoelectronic and chelating properties of the phosphine ligands bound to the two metals. We provide a thorough computational study on the unusual Cp* non-innocent behavior and the divergent bimetallic pathways observed. The cooperative FLP-type reactivity of all bimetallic pairs has been investigated and computationally examined for the case of N-H bond activation in ammonia.
Collapse
Affiliation(s)
- Macarena G Alférez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Juan J Moreno
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Celia Maya
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| |
Collapse
|
5
|
Navarro M, Moreno JJ, Pérez-Jiménez M, Campos J. Small molecule activation with bimetallic systems: a landscape of cooperative reactivity. Chem Commun (Camb) 2022; 58:11220-11235. [PMID: 36128973 PMCID: PMC9536487 DOI: 10.1039/d2cc04296g] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
There is growing interest in the design of bimetallic cooperative complexes, which have emerged due to their potential for bond activation and catalysis, a feature widely exploited by nature in metalloenzymes, and also in the field of heterogeneous catalysis. Herein, we discuss the widespread opportunities derived from combining two metals in close proximity, ranging from systems containing multiple M-M bonds to others in which bimetallic cooperation occurs even in the absence of M⋯M interactions. The choice of metal pairs is crucial for the reactivity of the resulting complexes. In this context, we describe the prospects of combining not only transition metals but also those of the main group series, which offer additional avenues for cooperative pathways and reaction discovery. Emphasis is given to mechanisms by which bond activation occurs across bimetallic structures, which is ascribed to the precise synergy between the two metal atoms. The results discussed herein indicate a future landscape full of possibilities within our reach, where we anticipate that bimetallic synergism will have an important impact in the design of more efficient catalytic processes and the discovery of new catalytic transformations.
Collapse
Affiliation(s)
- Miquel Navarro
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Juan José Moreno
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Marina Pérez-Jiménez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| |
Collapse
|