1
|
Zhao Y, Chen Z, Ma N, Cheng W, Zhang D, Cao K, Feng F, Gao D, Liu R, Li S, Streb C. Atomically Engineered Defect-Rich Palladium Metallene for High-Performance Alkaline Oxygen Reduction Electrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405187. [PMID: 39159133 PMCID: PMC11497008 DOI: 10.1002/advs.202405187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Defect engineering is a key chemical tool to modulate the electronic structure and reactivity of nanostructured catalysts. Here, it is reported how targeted introduction of defect sites in a 2D palladium metallene nanostructure results in a highly active catalyst for the alkaline oxygen reduction reaction (ORR). A defect-rich WOx and MoOx modified Pd metallene (denoted: D-Pd M) is synthesized by a facile and scalable approach. Detailed structural analyses reveal the presence of three distinct atomic-level defects, that are pores, concave surfaces, and surface-anchored individual WOx and MoOx sites. Mechanistic studies reveal that these defects result in excellent catalytic ORR activity (half-wave potential 0.93 V vs. RHE, mass activity 1.3 A mgPd-1 at 0.9 V vs. RHE), outperforming the commercial references Pt/C and Pd/C by factors of ≈7 and ≈4, respectively. The practical usage of the compound is demonstrated by integration into a custom-built Zn-air battery. At low D-Pd M loading (26 µgPd cm-2), the system achieves high specific capacity (809 mAh gZn -1) and shows excellent discharge potential stability. This study therefore provides a blueprint for the molecular design of defect sites in 2D metallene nanostructures for advanced energy technology applications.
Collapse
Affiliation(s)
- Yupeng Zhao
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Zhengfan Chen
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Nana Ma
- Henan Key Laboratory of Boron Chemistry and Advanced MaterialsSchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiang453007China
| | - Weiyi Cheng
- Henan Key Laboratory of Boron Chemistry and Advanced MaterialsSchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiang453007China
| | - Dong Zhang
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Kecheng Cao
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Fan Feng
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Dandan Gao
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Rongji Liu
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
- Helmholtz‐Institute UlmElectrochemical Energy ConversionHelmholtzstr. 1189081UlmGermany
| | - Shujun Li
- Henan Key Laboratory of Boron Chemistry and Advanced MaterialsSchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiang453007China
| | - Carsten Streb
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
- Helmholtz‐Institute UlmElectrochemical Energy ConversionHelmholtzstr. 1189081UlmGermany
| |
Collapse
|
2
|
Kasuk KA, Nerut J, Grozovski V, Lust E, Kucernak A. Design and Impact: Navigating the Electrochemical Characterization Methods for Supported Catalysts. ACS Catal 2024; 14:11949-11966. [PMID: 39169910 PMCID: PMC11334114 DOI: 10.1021/acscatal.4c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
This review will investigate the impact of electrochemical characterization method design choices on intrinsic catalyst activity measurements by predominantly using the oxygen reduction reaction (ORR) on supported catalysts as a model reaction. The wider use of hydrogen for transportation or electrical grid stabilization requires improvements in proton exchange membrane fuel cell (PEMFC) performance. One of the areas for improvement is the (ORR) catalyst efficiency and durability. Research and development of the traditional platinum-based catalysts have commonly been performed using rotating disk electrodes (RDE), rotating ring disk electrodes (RRDE), and membrane electrode assemblies (MEAs). However, the mass transport conditions of RDE and RRDE limit their usefulness in characterizing supported catalysts at high current densities, and MEA characterizations can be complex, lengthy, and costly. Ultramicroelectrode with a catalyst-filled cavity addresses some of these problems, but with limited success. Due to the properties discussed in this review, the recent floating electrode (FE) and the gas diffusion electrode (GDE) methods offer additional capabilities in the electrochemical characterization process. With the FE technique, the intrinsic activity of catalysts for ORR can be investigated, leading to a better understanding of the ORR mechanism through more reliable experimental data from application-relevant high-mass transport conditions. The GDEs are helpful bridging tools between RDE and MEA experiments, simplifying the fuel cell and electrolyzer manufacturing and operating optimization process.
Collapse
Affiliation(s)
- Karl-Ander Kasuk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Jaak Nerut
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Vitali Grozovski
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Enn Lust
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Anthony Kucernak
- Department
of Chemistry, Imperial College London, 80 Wood Lane, W12 7TA London, United Kingdom
| |
Collapse
|
3
|
Li XF, Su FY, Xie LJ, Tian YR, Yi ZL, Cheng JY, Chen CM. Carbon Corrosion Induced by Surface Defects Accelerates Degradation of Platinum/Graphene Catalysts in Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310940. [PMID: 38700049 DOI: 10.1002/smll.202310940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Indexed: 05/05/2024]
Abstract
Graphene supported electrocatalysts have demonstrated remarkable catalytic performance for oxygen reduction reaction (ORR). However, their durability and cycling performance are greatly limited by Oswald ripening of platinum (Pt) and graphene support corrosion. Moreover, comprehensive studies on the mechanisms of catalysts degradation under 0.6-1.6 V versus RHE (Reversible Hydrogen Electrode) is still lacking. Herein, degradation mechanisms triggered by different defects on graphene supports are investigated by two cycling protocols. In the start-up/shutdown cycling (1.0-1.6 V vs. RHE), carbon oxidation reaction (COR) leads to shedding or swarm-like aggregation of Pt nanoparticles (NPs). Theoretical simulation results show that the expansion of vacancy defects promotes reaction kinetics of the decisive step in COR, reducing its reaction overpotential. While under the load cycling (0.6-1.0 V vs. RHE), oxygen containing defects lead to an elevated content of Pt in its oxidation state which intensifies Oswald ripening of Pt. The presence of vacancy defects can enhance the transfer of electrons from graphene to the Pt surface, reducing the d-band center of Pt and making it more difficult for the oxidation state of platinum to form in the cycling. This work will provide comprehensive understanding on Pt/Graphene catalysts degradation mechanisms.
Collapse
Affiliation(s)
- Xiong-Fei Li
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang-Yuan Su
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Li-Jing Xie
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Yan-Ru Tian
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zong-Lin Yi
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Jia-Yao Cheng
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Cheng-Meng Chen
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Đukić T, Moriau L, Klofutar I, Šala M, Pavko L, González López FJ, Ruiz-Zepeda F, Pavlišič A, Hotko M, Gatalo M, Hodnik N. Adjusting the Operational Potential Window as a Tool for Prolonging the Durability of Carbon-Supported Pt-Alloy Nanoparticles as Oxygen Reduction Reaction Electrocatalysts. ACS Catal 2024; 14:4303-4317. [PMID: 38510667 PMCID: PMC10949198 DOI: 10.1021/acscatal.3c06251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
A current trend in the investigation of state-of-the-art Pt-alloys as proton exchange membrane fuel cell (PEMFC) electrocatalysts is to study their long-term stability as a bottleneck for their full commercialization. Although many parameters have been appropriately addressed, there are still certain issues that must be considered. Here, the stability of an experimental Pt-Co/C electrocatalyst is investigated by high-temperature accelerated degradation tests (HT-ADTs) in a high-temperature disk electrode (HT-DE) setup, allowing the imitation of close-to-real operational conditions in terms of temperature (60 °C). Although the US Department of Energy (DoE) protocol has been chosen as the basis of the study (30,000 trapezoidal wave cycling steps between 0.6 and 0.95 VRHE with a 3 s hold time at both the lower potential limit (LPL) and the upper potential limit (UPL)), this works demonstrates that limiting both the LPL and UPL (from 0.6-0.95 to 0.7-0.85 VRHE) can dramatically reduce the degradation rate of state-of-the-art Pt-alloy electrocatalysts. This has been additionally confirmed with the use of an electrochemical flow cell coupled to inductively coupled plasma mass spectrometry (EFC-ICP-MS), which enables real-time monitoring of the dissolution mechanisms of Pt and Co. In line with the HT-DE methodology observations, a dramatic decrease in the total dissolution of Pt and Co has once again been observed upon narrowing the potential window to 0.7-0.85 VRHE rather than 0.6-0.95 VRHE. Additionally, the effect of the potential hold time at both LPL and UPL on metal dissolution has also been investigated. The findings demonstrate that the dissolution rate of both metals is proportional to the hold time at UPL regardless of the applied potential window, whereas the hold time at the LPL does not appear to be as detrimental to the stability of metals.
Collapse
Affiliation(s)
- Tina Đukić
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, Ljubljana 1000, Slovenia
| | - Léonard
Jean Moriau
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
| | - Iva Klofutar
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
| | - Martin Šala
- Department
of Analytical Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
| | - Luka Pavko
- ReCatalyst
d.o.o., Hajdrihova Ulica
19, Ljubljana 1001, Slovenia
| | | | - Francisco Ruiz-Zepeda
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
| | - Andraž Pavlišič
- Department
of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1001, Slovenia
| | - Miha Hotko
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
- University
of Nova Gorica, Vipavska
13, Nova Gorica 5000, Slovenia
| | - Matija Gatalo
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
- ReCatalyst
d.o.o., Hajdrihova Ulica
19, Ljubljana 1001, Slovenia
| | - Nejc Hodnik
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
- University
of Nova Gorica, Vipavska
13, Nova Gorica 5000, Slovenia
| |
Collapse
|
5
|
Zhou Y, Yuan Q. PtCu/Pt core/atomic-layer shell hollow octahedra for oxygen reduction and methanol oxidation electrocatalysis. Chem Commun (Camb) 2024; 60:2918-2921. [PMID: 38372193 DOI: 10.1039/d4cc00030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Engineering effective bifunctional electrocatalysts that outperform the benchmark Pt/C for direct methanol proton exchange membrane fuel cells is desired and challenging. Here, we designed H-PtCu/PtL OH catalysts with a sub-nanometer Pt(111) shell layer featuring Cu- and Co-vacancies, which exhibited high activity in acidic oxygen reduction and methanol oxidation reactions.
Collapse
Affiliation(s)
- Yi Zhou
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, P. R. China.
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, P. R. China.
| |
Collapse
|
6
|
Lu H, Wu D, Gu Y, Sun W, Yang X, Li W, Shuai H, Zhao X. A facile mixed complex synthesis method for perovskite oxides toward electrocatalytic oxygen reduction. Chem Commun (Camb) 2023; 59:14149-14152. [PMID: 37955226 DOI: 10.1039/d3cc04585d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The perovskite-type La(0.5+x)Sr(0.5-x)FeO3-δ (x = 0.00, 0.10, 0.20) oxides for the electrocatalytic oxygen reduction reaction (ORR) were synthesized by a facile reaction-EDTA/citric acid mixed complex sol-gel method. The cubic single-phase perovskite structure of the as-prepared oxides is demonstrated using powder X-ray diffraction (XRD). Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy/selected area electron diffraction (TEM-SAED), and X-ray photoelectron spectroscopy (XPS) characterizations were also conducted for the perovskite-type La(0.5+x)Sr(0.5-x)FeO3-δ (x = 0.00, 0.10, 0.20) oxides. Furthermore, the electrochemical ORR properties of the as-prepared oxides in alkaline media were studied, with the oxides exhibiting good electrocatalytic ORR performance.
Collapse
Affiliation(s)
- Hui Lu
- School of Science and Technology, Xinyang University, Xinyang 464000, Henan Province, People's Republic of China.
- Xinyang Municipal Key Laboratory of Critical Materials for Energy and Green Chemistry Processes (XYU), Xinyang 464000, Henan Province, People's Republic of China
- Henan Provincial Engineering Research Center of Critical Materials for High-performance Green Chemical Engineering and Energy (XYU), Xinyang 464000, Henan Province, People's Republic of China
| | - Danyang Wu
- School of Physics and Electronics Engineering, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China.
| | - Yue Gu
- School of Science and Technology, Xinyang University, Xinyang 464000, Henan Province, People's Republic of China.
| | - Wenxin Sun
- School of Science and Technology, Xinyang University, Xinyang 464000, Henan Province, People's Republic of China.
| | - Xiaojian Yang
- School of Science and Technology, Xinyang University, Xinyang 464000, Henan Province, People's Republic of China.
- Xinyang Municipal Key Laboratory of Critical Materials for Energy and Green Chemistry Processes (XYU), Xinyang 464000, Henan Province, People's Republic of China
- Henan Provincial Engineering Research Center of Critical Materials for High-performance Green Chemical Engineering and Energy (XYU), Xinyang 464000, Henan Province, People's Republic of China
| | - Wenxuan Li
- School of Science and Technology, Xinyang University, Xinyang 464000, Henan Province, People's Republic of China.
| | - Honglei Shuai
- School of Science and Technology, Xinyang University, Xinyang 464000, Henan Province, People's Republic of China.
- Henan Provincial Engineering Research Center of Critical Materials for High-performance Green Chemical Engineering and Energy (XYU), Xinyang 464000, Henan Province, People's Republic of China
| | - Xinsheng Zhao
- School of Physics and Electronics Engineering, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China.
| |
Collapse
|
7
|
Sun D, Zhao Z, Jin M, Zhang H. Tailoring ionomer distribution in the catalyst layer via heteroatom-functionalization toward superior PEMFC performance. Chem Commun (Camb) 2023; 59:11357-11360. [PMID: 37670613 DOI: 10.1039/d3cc03610c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
We investigate in detail the influence of O, S, and N functionalization of Pt3Co/C catalysts on the proton exchange membrane fuel cell (PEMFC). The results demonstrated that N-functionalization is more beneficial for the distribution of the ionomer in the catalyst layer, resulting in a trade-off between oxygen and hydronium ion transport.
Collapse
Affiliation(s)
- Dianding Sun
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Zhong Zhao
- University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
| | - Meng Jin
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|