1
|
Kikukawa Y, Taga M, Horikawa Y, Mitsuhashi R, Hayashi Y. Synthesis of Hollowed Polyoxometalate with a Flipped VO 5 Unit by the Elimination of a Centered Organic Molecule. Inorg Chem 2025; 64:344-350. [PMID: 39707974 DOI: 10.1021/acs.inorgchem.4c04682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Mechanistic understanding of the formation of clusters plays a role in designing the structure-dependent properties. Based on the fact that anions act as templates to form spherical polyoxovanadates, various structures were reported by changing anions in the synthetic solution. In this work, another factor in the formation of spherical polyoxometalates was demonstrated. By the reaction of [V10O26]4- in acetonitrile with a reductant to increase the number of tetravalent V4+ and p-toluene sulfonic acid to convert tetrahedral VO4 units to square-pyramidal VO5, acetonitrile-containing polyoxovanadate [V24O60(CH3CN)]6- (ICH3CN) was synthesized. The bulky and hydrophobic aromatic rings prevented the formed anions from acting as a template. By changing the synthetic solvent, encapsulated moieties were controlled. Nitromethane was also encapsulated to afford [V24O60(CH3NO2)]6- (ICH3NO2). When acetone was used as the solvent, the contaminated water was encapsulated to form [V24O60(H2O)]6- (IH2O). The encapsulated acetonitrile molecule was eliminated by heating ICH3CN up to 230 °C under N2 flow conditions to give hollowed polyoxovanadate [V24O60]6- (II), even though ICH3CN possesses no pores for acetonitrile to pass. From the X-ray crystallographic analysis of II, one of the 24 VO5 units was flipped. The electrochemical properties and catalytic performances between ICH3CN and II were also investigated.
Collapse
Affiliation(s)
- Yuji Kikukawa
- Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Mayumi Taga
- Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Yusuke Horikawa
- Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Ryoji Mitsuhashi
- Institute of Liberal Arts and Science, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Yoshihito Hayashi
- Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| |
Collapse
|
2
|
Denikaev A, Kuznetsova Y, Bykov A, Zhilyakov A, Belova K, Abramov P, Moskalenko N, Skorb E, Grzhegorzhevskii K. Keplerate {Mo 132}-Stearic Acid Conjugates: Supramolecular Synthons for the Design of Dye-Loaded Nanovesicles, Langmuir-Schaefer Films, and Infochemical Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7430-7443. [PMID: 38299992 DOI: 10.1021/acsami.3c16374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Self-assembly gives rise to the versatile strategies of smart material design but requires precise control on the supramolecular level. Here, inorganic-organic synthons (conjugates) are produced by covalently grafting stearic acid tails to giant polyoxometalate (POM) Keplerate-type {Mo132} through an organosilicon linker (3-aminopropyltrimethoxysilane, APTMS). Using the liposome production approach, the synthons self-assemble to form hollow nanosized vesicles (100-200 nm in diameter), which can be loaded with organic dyes─eriochrome black T (ErChB) and fluorescein (FL)─where the POM layer serves as a membrane with subnanopores for cell-like communication. The dye structure plays an essential role in embedding dyes into the vesicle's shell, which opens the way to control the colloidal stability of the system. The produced vesicles are moved by an electric field and used for the creation of an infochemistry scheme with three types of logic gates (AND, OR, and IMP). To design 2D materials, synthons can form spread films, from simple addition on the water-air interface to lateral compression in the Langmuir bath, and highly ordered structures appear, demonstrating electron diffraction in Langmuir-Schaefer (LS) films. These results show the significant potential of POM-based synthons and nanosized vesicles to supramolecular design the diversity of smart materials.
Collapse
Affiliation(s)
- Andrey Denikaev
- Ural Federal University, 19 Mira St., 620002 Ekaterinburg, Russia
| | - Yulia Kuznetsova
- Institute of Solid State Chemistry of the Ural Branch of the RAS, 91, Pervomaiskaya St., 620990 Ekaterinburg, Russia
| | - Alexey Bykov
- Institute of Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Arkadiy Zhilyakov
- Ural Federal University, 19 Mira St., 620002 Ekaterinburg, Russia
- M.N. Mikheev lnstitute of Metal Physics of Ural Branch of RAS,18 S. Kovalevskaya St., 620108 Ekaterinburg, Russia
| | - Ksenia Belova
- Ural Federal University, 19 Mira St., 620002 Ekaterinburg, Russia
- Institute of High Temperature Electrochemistry of the Ural Branch of RAS, 22 S. Kovalevskoy St./20 Akademicheskaya St., 620066 Ekaterinburg, Russia
| | - Pavel Abramov
- Ural Federal University, 19 Mira St., 620002 Ekaterinburg, Russia
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Nikolai Moskalenko
- Institute of High Temperature Electrochemistry of the Ural Branch of RAS, 22 S. Kovalevskoy St./20 Akademicheskaya St., 620066 Ekaterinburg, Russia
| | - Ekaterina Skorb
- Infochemistry Scientific Center, ITMO University, Kronverksky Pr. 49, bldg. A, 197101 St. Petersburg, Russia
| | | |
Collapse
|
3
|
Murata C, Nakashuku A, Shichibu Y, Konishi K. Collective Effects of Multiple Fluorine Atoms Causing π-philic Characteristic within a Caged Polyoxometalate Framework. Chemistry 2024; 30:e202302328. [PMID: 37974320 DOI: 10.1002/chem.202302328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
Perfluorination brings about distinctive properties arising from the unusual nature of the F element, which have been extensively developed in materials science and chemistry. Herein we report that the construction of F-rich inner space within a hollowed Mo132 O372 cage ([Mo132 O372 (OCOR)30 (H2 O)72 ]42- ) leads to the emergence of unique guest binding activities in encapsulation. Prominently, the trifluoroacetate-modified cage (R=CF3 , 2) having as many as 90 F groups inside favors trapping cyclopentadiene (Cp), which is hardly trapped by the non-fluorinated counterpart (R=CH3 , 1). Systematic studies using related hydrocarbons show that the amount of the encapsulated guest is correlated with the unsaturation degree of the guests, implying the involvement of the attractive interaction of the CF3 -modified interior wall with the guest π-electron clouds. Control experiments using the semi-fluorinated analogues (R=CF2 H, CFH2 ) reveal that the perfluorination is a critical factor to facilitate the Cp encapsulation by 2, indicating that collective effects of polar C-F bonds spreading over the interior surface, rather than the polarity of the individual C-F bonds, are responsible. We also provide a successful example of the physical molecular confinement within the cage through the "ship-in-a-bottle" Diels-Alder reaction between trapped diene and dienophile.
Collapse
Affiliation(s)
- Chinatsu Murata
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, 060-0810, Sapporo, Japan
| | - Akari Nakashuku
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, 060-0810, Sapporo, Japan
| | - Yukatsu Shichibu
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, 060-0810, Sapporo, Japan
- Faculty of Environmental Science, Hokkaido University, North 10 West 5, 060-0810, Sapporo, Japan
| | - Katsuaki Konishi
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, 060-0810, Sapporo, Japan
- Faculty of Environmental Science, Hokkaido University, North 10 West 5, 060-0810, Sapporo, Japan
| |
Collapse
|
4
|
Chen J, Li J, Liu X, He Z, Shi G. An anomalous anion transfer order in graphene oxide membranes induced by anion-π interactions. Phys Chem Chem Phys 2023; 25:13260-13264. [PMID: 37161531 DOI: 10.1039/d3cp00986f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Selective transport of anions across membranes has become an important goal in chemistry and biology. Here, we found an anomalous anion transfer order within the graphene oxide membrane: Cl- > Br- > F- > I-. This is at odds with the conventional ranking of the transfer order, which usually decreases as the radii of the anions increase, i.e., F- > Cl- > Br- > I-. The abnormal transportation of F- can be ascribed to the strong anion-π interactions between F- and graphene oxide sheets. Such unexpectedly strong anion-π interaction resulted in the lower movement of F- in the graphene oxide membrane and caused the anomalous anion transfer order. Our findings not only provide experimental evidence of anion-π interactions, but also improve our understanding of anion-π interactions in the selective transport of anions across a two-dimensional membrane.
Collapse
Affiliation(s)
- Junjie Chen
- Shanghai Applied Radiation Institute, State Key Laboratory Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Jie Li
- Shanghai Applied Radiation Institute, State Key Laboratory Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Xing Liu
- Shanghai Applied Radiation Institute, State Key Laboratory Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Zhenglin He
- Shanghai Applied Radiation Institute, State Key Laboratory Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Guosheng Shi
- Shanghai Applied Radiation Institute, State Key Laboratory Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, P. R. China
| |
Collapse
|