1
|
Gao Y, Yang Y, Lv Y, Yao J, Yin J, Zhu K, Yan J, Cao D, Wang G. Synergistic enhancement of oxygen vacancy enrichment and morphology regulation in CeO 2-NiCo 2O 4 heterostructure catalysts for high-performance cathodes in direct borohydride-hydrogen peroxide fuel cells. J Colloid Interface Sci 2024; 673:9-18. [PMID: 38870666 DOI: 10.1016/j.jcis.2024.06.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Hydrogen peroxide (H2O2) emerges as a viable oxidant for fuel cells, necessitating the development of an efficient and cost-effective electrocatalyst for the hydrogen peroxide reduction reaction (HPRR). In this study, we synthesized a self-supporting, highly active HPRR electrocatalyst comprising two morphologically distinct components: CeO2-NiCo2O4 nanowires and CeO2-NiCo2O4 metal organic framework derivatives, via a two-step hydrothermal process followed by air calcination. X-ray diffraction and transmission electron microscopy analysis confirmed the presence of CeO2 and NiCo2O4, revealing the amalgamated interface between them. CeO2 exhibits multifunctionality in regulating the surface electronic configuration of NiCo2O4, fostering synergistic connections, and introducing oxygen deficiencies to enhance the catalytic efficacy in HPRR. Electrochemical measurements demonstrate a reduction current density of 789.9 mA·cm-2 at -0.8 V vs. Ag/AgCl. The assembly of direct borohydride-hydrogen peroxide fuel cell (DBHPFC) exhibits a peak power density of 45.2 mW·cm-2, demonstrating durable stability over a continuous operation period of 120 h. This investigation providing evidence that the fabrication of heterostructured catalysts based on CeO2 for HPRR is a viable approach for the development of high-efficiency electrocatalysts in fuel cell technology.
Collapse
Affiliation(s)
- Yimin Gao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Yuheng Yang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Yi Lv
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Jiaxin Yao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Jinling Yin
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Kai Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Jun Yan
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Dianxue Cao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| |
Collapse
|
2
|
Jiang Y, Fu H, Liang Z, Zhang Q, Du Y. Rare earth oxide based electrocatalysts: synthesis, properties and applications. Chem Soc Rev 2024; 53:714-763. [PMID: 38105711 DOI: 10.1039/d3cs00708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
As an important strategic resource, rare earths (REs) constitute 17 elements in the periodic table, namely 15 lanthanides (Ln) (La-Lu, atomic numbers from 57 to 71), scandium (Sc, atomic number 21) and yttrium (Y, atomic number 39). In the field of catalysis, the localization and incomplete filling of 4f electrons endow REs with unique physical and chemical properties, including rich electronic energy level structures, variable coordination numbers, etc., making them have great potential in electrocatalysis. Among various RE catalytic materials, rare earth oxide (REO)-based electrocatalysts exhibit excellent performances in electrocatalytic reactions due to their simple preparation process and strong structural variability. At the same time, the electronic orbital structure of REs exhibits excellent electron transfer ability, which can reduce the band gap and energy barrier values of rate-determining steps, further accelerating the electron transfer in the electrocatalytic reaction process; however, there is a lack of systematic review of recent advances in REO-based electrocatalysis. This review systematically summarizes the synthesis, properties and applications of REO-based nanocatalysts and discusses their applications in electrocatalysis in detail. It includes the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), methanol oxidation reaction (MOR), nitrogen reduction reaction (NRR) and other electrocatalytic reactions and further discusses the catalytic mechanism of REs in the above reactions. This review provides a timely and comprehensive summary of the current progress in the application of RE-based nanomaterials in electrocatalytic reactions and provides reasonable prospects for future electrocatalytic applications of REO-based materials.
Collapse
Affiliation(s)
- Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Hao X, Zhang X, Xu Y, Zhou Y, Wei T, Hu Z, Wu L, Feng X, Zhang J, Liu Y, Yin D, Ma S, Xu B. Atomic-scale insights into the interfacial charge transfer in a NiO/CeO 2 heterostructure for electrocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 643:282-291. [PMID: 37068362 DOI: 10.1016/j.jcis.2023.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
To understand the underlying mechanism of the interfacial charge transfer and local chemical state variation in the nonprecious-based hydrogen evolution reaction (HER) electrocatalysts, a model system of the NiO/CeO2 heterostructure was chosen for investigation using a combination of the advanced electron microscopic characterization and first-principles calculations. The results directly proved that interfacial charge transfer occurs from Ni to Ce, leading to reduction in the valence state of Ce and increased formation of VO. This would optimize ΔGH* and facilitate the hydrogen evolution process, resulting in outstanding HER performance in 1 M KOH with a low overpotential of 99 mV at the current density of 10 mA•cm-2 and a modest Tafel slope of 78.4 mV•dec-1 for the NiO/CeO2 heterostructure sample. Therefore, the improved HER performance could be attributed to the synergistic coupling interactions and electron redistribution at the interface of NiO and CeO2. These results concretely demonstrate the direct determination of the interfacial structure of the heterostructure and provide atomistic insights to unravel the underlying mechanism of interfacial charge transfer induced HER performance improvement.
Collapse
Affiliation(s)
- Xiaodong Hao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China.
| | - Xishuo Zhang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China; School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yang Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China; School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yuhao Zhou
- School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Tingting Wei
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhuangzhuang Hu
- School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lei Wu
- School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xinyi Feng
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China; School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jin Zhang
- School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yi Liu
- School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Deqiang Yin
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Shufang Ma
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| |
Collapse
|
4
|
Pratama DSA, Haryanto A, Lee CW. Heterostructured mixed metal oxide electrocatalyst for the hydrogen evolution reaction. Front Chem 2023; 11:1141361. [PMID: 36998571 PMCID: PMC10043228 DOI: 10.3389/fchem.2023.1141361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
The hydrogen evolution reaction (HER) has attracted considerable attention lately because of the high energy density and environmental friendliness of hydrogen energy. However, lack of efficient electrocatalysts and high price hinder its wide application. Compared to a single-phase metal oxide catalyst, mixed metal oxide (MMO) electrocatalysts emerge as a potential HER catalyst, especially providing heterostructured interfaces that can efficiently overcome the activation barrier for the hydrogen evolution reaction. In this mini-review, several design strategies for the synergistic effect of the MMO catalyst on the HER are summarized. In particular, metal oxide/metal oxide and metal/metal oxide interfaces are explained with fundamental mechanistic insights. Finally, existing challenges and future perspectives for the HER are discussed.
Collapse
|
5
|
Qin M, Wang Y, Zhang H, Humayun M, Xu X, Fu Y, Kadirov MK, Wang C. Hierarchical Co(OH)F/CoFe-LDH heterojunction enabling high-performance overall water-splitting. CrystEngComm 2022. [DOI: 10.1039/d2ce00817c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the serious energy and environmental issues, hydrogen generation via water splitting has been regarded as a green and promising alternative strategy to the use of fossil fuels.
Collapse
Affiliation(s)
- Mingliang Qin
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, Jiangxi, P. R. China
| | - Yamei Wang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, Jiangxi, P. R. China
| | - Huaming Zhang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, Jiangxi, P. R. China
- Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, 330063, Jiangxi, P. R. China
| | - Muhammad Humayun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Xuefei Xu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Yanjun Fu
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, Jiangxi, P. R. China
- Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, 330063, Jiangxi, P. R. China
| | - Marsil K. Kadirov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8, Akad. Arbuzov Str., Kazan 420088, Russia
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| |
Collapse
|