1
|
Kempen T, Cadang L, Fan Y, Zhang K, Chen T, Wei B. Online native hydrophobic interaction chromatography-mass spectrometry of antibody-drug conjugates. MAbs 2025; 17:2446304. [PMID: 39722128 DOI: 10.1080/19420862.2024.2446304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Hydrophobic interaction chromatography (HIC) is commonly used to determine the drug-to-antibody ratio (DAR) and drug load distribution of antibody-drug conjugates (ADCs). However, identifying various DAR species separated by HIC is challenging due to the traditional use of mobile phases that are incompatible with mass spectrometry (MS). Existing approaches used to couple HIC with MS often encounter issues, such as complex instrumentation, compromised separation efficiency, and reduced MS sensitivity. In this study, we introduce a 22-min online native HIC-MS method for the separation and characterization of different DAR species in ADCs, addressing these challenges. The key novelty of this method is the use of ammonium tartrate, a kosmotropic and thermally decomposable salt, as the salt of HIC mobile phase, ensuring both excellent HIC separation and MS compatibility. Additionally, an ultrashort size exclusion chromatography step is integrated for online sample cleaning, enhancing MS sensitivity. This platform native HIC-MS method offers a rapid, sensitive, and robust solution for comprehensive profiling of DAR species in ADCs with a simple and cost-effective instrumental setup.
Collapse
Affiliation(s)
- Trevor Kempen
- Synthetic Molecule Analytical Chemistry, Genentech Inc., South San Francisco, CA, USA
| | - Lance Cadang
- Synthetic Molecule Analytical Chemistry, Genentech Inc., South San Francisco, CA, USA
| | - Yuchen Fan
- Synthetic Molecule Analytical Chemistry, Genentech Inc., South San Francisco, CA, USA
| | - Kelly Zhang
- Synthetic Molecule Analytical Chemistry, Genentech Inc., South San Francisco, CA, USA
| | - Tao Chen
- Synthetic Molecule Analytical Chemistry, Genentech Inc., South San Francisco, CA, USA
| | - Bingchuan Wei
- Synthetic Molecule Analytical Chemistry, Genentech Inc., South San Francisco, CA, USA
| |
Collapse
|
2
|
Mura M, Carucci C, Caddeo E, Sovová Š, Piludu M, Pekař M, Jachimska B, Parsons DF, Salis A. Specific buffer effects on the formation of BSA protein corona around amino-functionalized mesoporous silica nanoparticles. J Colloid Interface Sci 2025; 677:540-547. [PMID: 39106779 DOI: 10.1016/j.jcis.2024.07.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/13/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
The effect of buffer species on biomolecules and biomolecule-nanoparticle interactions is a phenomenon that has been either neglected, or not understood. Here, we study the formation of a BSA protein corona (PC) around amino-functionalized mesoporous silica nanoparticles (MSN-NH2) in the presence of different buffers (Tris, BES, cacodylate, phosphate, and citrate) at the same pH (7.15) and different concentrations (10, 50, and 100 mM). We find that BSA adsorption is buffer specific, with the adsorbed amount of BSA being 4.4 times higher in the presence of 100 mM Tris (184 ± 3 mg/g) than for 100 mM citrate (42 ± 2 mg/g). That is a considerable difference that cannot be explained by conventional theories. The results become clearer if the interaction energies between BSA and MSN-NH2, considering the electric double layer (EEDL) and the van der Waals (EvdW) terms, are evaluated. The buffer specific PC derives from buffer specific zeta potentials that, for MSN-NH2, are positive with Tris and negative with citrate buffers. A reversed sign of zeta potentials can be obtained by considering polarizability-dependent dispersion forces acting together with electrostatics to give the buffer specific outcome. These results are relevant not only to our understanding of the formation of the PC but may also apply to other bio- and nanosystems in biological media.
Collapse
Affiliation(s)
- Monica Mura
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Cristina Carucci
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Elena Caddeo
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Šárka Sovová
- Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czechia
| | - Marco Piludu
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Miloslav Pekař
- Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czechia
| | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Krakow, Poland
| | - Drew F Parsons
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy.
| |
Collapse
|
3
|
Tootoonchian P, Bahçeci L, Budnyk A, Okur HI, Baytekin B. Lyotropic "Salty" Tuning for Straightforward Diversification and Anisotropy in Hydrogel Actuators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 39743324 DOI: 10.1021/acs.langmuir.4c03291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The specific ion effect (SIE), the control of polymer solubility in aqueous solutions by the added ions, has been a phenomenon known for more than a century. The seemingly simple nature of the ion-polymer-water interactions can lead to complex behaviors, which have also been exploited in many applications in biochemistry, electrochemistry, and energy harvesting. Here, we show an emerging diversification of actuation behaviors in "salty" hydrogel and hydrogel-paper actuators. SIE controls not only the dehydration speeds but also the water diffusion and mechanical properties of the gels, leading to composite actuation behavior. Most reported thermally activated hydrogel actuators suffer from expensive precursors or complex fabrication processes. This work addresses these issues by using a physicochemical effect displayed within an inexpensive gel with common salts. SIE-controlled anisotropic actuation in geometrically different systems provides a demonstration of how such physicochemical effects can lead to higher complexity in basic soft material design and hydrogel soft robotics.
Collapse
Affiliation(s)
| | - Levent Bahçeci
- Chemistry Department, Bilkent University, Ankara 06800, Turkey
| | - Andriy Budnyk
- UNAM - National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Halil I Okur
- Chemistry Department, Bilkent University, Ankara 06800, Turkey
- UNAM - National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Bilge Baytekin
- Chemistry Department, Bilkent University, Ankara 06800, Turkey
- UNAM - National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
4
|
Wang P, Zheng T, Reitenbach J, Wegener SA, Huber LF, Kreuzer LP, Liang S, Cubitt R, Cheng YJ, Xu T, Hildebrand V, Laschewsky A, Papadakis CM, Müller-Buschbaum P. Solvation Dynamics of Thermoresponsive Polymer Films: The Influence of Salt Series in Water and Mixed Water/Methanol Atmosphere. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2408073. [PMID: 39739452 DOI: 10.1002/advs.202408073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/28/2024] [Indexed: 01/02/2025]
Abstract
Understanding the salt effects on solvation behaviors of thermoresponsive polymers is crucial for designing and optimizing responsive systems suitable for diverse environments. In this work, the effect of potassium salts (CH3COOK, KCl, KBr, KI, and KNO3) on solvation dynamics of poly(4-(N-(3'-methacrylamidopropyl)-N,N-dimethylammonio) butane-1-sulfonate) (PSBP), poly(N-isopropylmethacrylamide) (PNIPMAM), and PSBP-b-PNIPMAM films is investigated under saturated water and mixed water/methanol vapor via advanced in situ neutron/optical characterization techniques. These findings reveal that potassium salts enhance the films' hygroscopicity or methanol-induced swellability. Interestingly, the anions effects do not mirror the empirical Hofmeister series, which describes the salting-in effects for such polymers in dilute aqueous solution, particularly evident in PSBP films with an approximately inverted order. PNIPMAM and PSBP-b-PNIPMAM exhibit pronounced deviations from such an inverted correlation and vary somewhat for water-rich and methanol-rich atmospheres. Molecular dynamics (MD) simulations suggest that the observed orders of solvation result from the accessibility of the hydrated solvation shells close to the PSBP-b-PNIPMAM chains.
Collapse
Affiliation(s)
- Peixi Wang
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Tianle Zheng
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Julija Reitenbach
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Simon A Wegener
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Linus F Huber
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Lucas P Kreuzer
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Suzhe Liang
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Robert Cubitt
- Institut-Laue-Langevin, 6 rue Jules Horowitz, 38000, Grenoble, France
| | - Ya-Jun Cheng
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd., Ningbo, Zhejiang Province, 315201, P.R. China
| | - Tonghui Xu
- Department of Chemistry, College of Sciences. Shanghai University, 200444, Shanghai, P. R. China
| | - Viet Hildebrand
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - André Laschewsky
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Fraunhofer Institut für Angewandte Polymerforschung, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| | - Christine M Papadakis
- Soft Matter Physics GroupDepartment of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Peter Müller-Buschbaum
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| |
Collapse
|
5
|
Sun K, Nguyen NN, Nguyen AV. Detecting ion-specific forces between fatty acid colloids and salt crystals in brines using colloidal probe AFM. J Colloid Interface Sci 2024; 683:204-214. [PMID: 39733536 DOI: 10.1016/j.jcis.2024.12.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
HYPOTHESIS Ion-specific forces in concentrated salt solutions play critical roles in many applications, ranging from biology to engineering, e.g., separating water-soluble minerals in brines by flotation using air bubbles. There should be some differences in colloidal forces between the surfactant precipitates in brines and NaCl crystals, and KCl crystals, making their selective aggregation and flotation separation possible. EXPERIMENTS Micron-sized spheres of fatty acid colloids were successfully prepared using lead laurate, characterized, and used to fabricate the AFM probes. Using a special AFM cell design and procedure, interaction force spectroscopy and force mapping on NaCl and KCl crystal surfaces using the probes were performed in their brines (7 M) and quantified using numerical solutions of advanced van der Waals and electrical double-layer theories to reveal valuable distributions of attractive, repulsive, and adhesive colloidal forces between the surfactant colloids and salt crystals. FINDINGS Attraction and adhesion between the lead laurate colloidal probe and the NaCl crystal surface were much stronger than those measured on the KCl crystal surface, explaining the selective separation between NaCl and KCl crystals by flotation in the brines. Theoretical analysis of the measured forces shows the potential role of ion-specific interactions in predicting selective aggregation and flotation separation. Our work provides an innovative approach to quantifying the intermolecular interactions between surfactant colloids and NaCl and KCl crystals, offering new theories on colloid and surface chemistry regarding ion-specific forces that underpin aggregation and separation in brines and beyond.
Collapse
Affiliation(s)
- Kangkang Sun
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; School of Chemical Engineering and ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals (UQ Node), The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Ngoc N Nguyen
- School of Chemical Engineering and ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals (UQ Node), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anh V Nguyen
- School of Chemical Engineering and ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals (UQ Node), The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
6
|
Mou Y, Jiang Y, He X, Zhang L, Yang J. Dynamic Modulation of Ions Solvation Sheath by Butyramide as Molecular Additives in Aqueous Batteries. J Phys Chem B 2024. [PMID: 39719376 DOI: 10.1021/acs.jpcb.4c07584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
The high activity of water in aqueous battery electrolytes can trigger side reactions, limiting their large-scale application. Additives that form contact pairs (CPs) with cations by coordinating with them can effectively reduce water's activity. However, due to the complex interactions between ions, additives, and solvent molecules and the fact that current strategies for additive screening primarily rely on static physical parameters, the dynamic mechanisms that govern the modulation of ion solvation sheaths are still poorly understood. In this study, we introduce butyramide (BUT) as a molecular additive and employ molecular simulations to demonstrate its regulatory effect on the hydration sheath of Ca2+, which is more pronounced than that for Na+. The dynamic process by which BUT replaces water molecules in the tight hydration sheath of Ca2+ is elucidated by forming a stable [BUT-Ca2+(H2O)7] complex that suppresses water molecule activity. At a 2 M concentration, the free energy barrier for the transition from contact pair (CP) to solvent-shared pair (SP) for Ca2+ is 11.7 kJ/mol higher than that for Na+ at 8.5 kJ/mol, consistent with the cationic Hofmeister series. Furthermore, the stability and dynamic fluctuations among solvent-separated pair (SSP), SP, and CP states are attributed to the balance between electrostatic attractive potential energy and hydration repulsive potential energy, supported by quantum chemical calculations of the ion desolvation process. Using BUT as an additive presents a promising strategy to enhance battery performance by modulating the solvation environment of metal ions, addressing the growing demand for safer and more sustainable energy storage solutions.
Collapse
Affiliation(s)
- Yulan Mou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yizhi Jiang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jinrong Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
7
|
Gibbons AM, Boadu M, Ohno PE. Aerosol Fluorescent Labeling via Probe Molecule Volatilization. Anal Chem 2024; 96:19947-19954. [PMID: 39630955 DOI: 10.1021/acs.analchem.4c04291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The physicochemical properties of aerosols, including hygroscopicity, phase state, pH, and viscosity, influence important processes ranging from virus transmission and pulmonary drug delivery to atmospheric light scattering and chemical reactivity. Despite their importance, measurements of these key properties in aerosols remain experimentally challenging due to small particle sizes and low mass densities in air. Fluorescence probe spectroscopy is one of the only analytical techniques that is capable of experimentally determining these properties in situ in a nondestructive and minimally perturbative manner. However, the application of fluorescence probe spectroscopy to important classes of aerosols including exhaled respiratory and ambient atmospheric aerosols has been limited due to a typical reliance on premixing the probe molecule with particle constituents prior to particle generation, which is not always possible. Here, a method for aerosol fluorescent labeling based on probe molecule volatilization is developed. The method is first applied to label model polyethylene glycol (PEG) aerosols with two different polarity-sensitive probes, Nile red and Prodan. The similarity of the relative humidity-dependent fluorescent emission of each probe between prelabeled and volatilized-probe PEG particles validated the methodology. A preliminary application of the technique to indicate the hygroscopicity of artificial saliva respiratory particles and model atmospheric secondary organic aerosol particles is demonstrated. The methodology developed here paves the way for future studies applying powerful fluorescent probe-based analytical techniques to study exhaled or natural aerosols for which fluorescent prelabeling is not possible.
Collapse
Affiliation(s)
- Angel M Gibbons
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Michael Boadu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Paul E Ohno
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
8
|
Donnelly RB, Wagner NJ, Liu Y. Quantifying Long-Time Hydrogen-Deuterium Exchange of Bovine Serum Albumin with Hydrogen-Deuterium Exchange Small-Angle Neutron Scattering. J Phys Chem B 2024. [PMID: 39688290 DOI: 10.1021/acs.jpcb.4c03967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Hydrogen-deuterium exchange (HDX) measured by small-angle neutron scattering (HDX-SANS) is used to measure HDX in bovine serum albumin (BSA) under different temperatures and formulation conditions. HDX-SANS measurements are performed at 40, 50, and 60 °C in D2O after storing proteins at 4 °C for 1 week to pre-exchange the readily accessible hydrogens. This enables us to probe the long-time HDX of protons at the core of the BSA proteins, which is more challenging for solvent molecules to access. The HDX kinetics are observed to follow an Arrhenius behavior with an apparent activation energy of 81.4 ± 1 kJ/mol, which is composed of the energy for protein conformational fluctuations and that for exchanging an amide hydrogen. Adding a tonicity agent of 150 mM NaCl has only a very slight effect on the HDX kinetics. Interestingly, we also observed that the formulation with faster HDX kinetics has a lower onset temperature of denaturation. This observation is qualitatively consistent with a previous study of HDX-SANS on a monoclonal antibody (mAb), despite the large difference of the secondary structure between BSA, dominated by alpha helices, and mAb, which is predominantly composed of β-sheets.
Collapse
Affiliation(s)
- Róisín B Donnelly
- Department of Biomedical Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
| | - Norman J Wagner
- Department of Biomedical Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
| | - Yun Liu
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
9
|
Bhattacharya I, Saha R, Pyne S, Bera A, Mitra RK. Excipient Induced Unusual Phase Separation in Bovine Serum Albumin Solution: An Explicit Role Played by Ion-Hydration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25822-25833. [PMID: 39575889 DOI: 10.1021/acs.langmuir.4c02802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
We report an instantaneous room-temperature phase separation of 1 mM bovine serum albumin solution in the presence of (20% acetic acid+0.2 M NaCl), a routinely used food preservative; an opaque liquid-like phase (L) coexists in equilibrium with a granular gel like phase (G). Interestingly, neither 20% acetic acid nor 0.2 M NaCl individually induces such a phase separation. Field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) imaging show aggregated proteins to be dispersed in the upper phase, while the lower phase is composed of cross-linked fibrils (hydrogels). Mid-IR FTIR, Raman scattering, and circular dichroism (CD) experiments reveal a significant increase in the β-sheet content in BSA, which confirms the formation of amyloids in the presence of the excipient. Both L and G phases undergo distinct visual and microscopic changes upon incubation at 25 and 80 °C. It is evident that the added salt plays a pivotal role in bringing about this otherwise unique phase behavior. We divulge the explicit role of the ion associated hydration using THz-FTIR measurements in the 1.5-16.7 THz (50-550 cm-1) frequency window. Systematic alteration in the ion-induced THz-active mode of water envisions the key role of ions in shaping the various phases. Our study depicts an intriguing observation of severe amyloidosis of BSA upon the addition of a food preservative, even at room temperature, which is expected to add new insight into amyloid research. Considering the increasing number of individuals suffering from several neurodegenerative disorders (Alzheimer's, Parkinson's, type-2 diabetes, obesity, cancer, etc.), this study leads a caution toward critically revisiting the usage of known food preservatives.
Collapse
Affiliation(s)
- Indrani Bhattacharya
- Department of Chemical and Biological Sciences S.N. Bose National Centre for Basic Sciences Block-JD, Sector-III, Salt Lake Kolkata-700106, India
| | - Ria Saha
- Department of Chemical and Biological Sciences S.N. Bose National Centre for Basic Sciences Block-JD, Sector-III, Salt Lake Kolkata-700106, India
| | - Sumana Pyne
- Department of Chemical and Biological Sciences S.N. Bose National Centre for Basic Sciences Block-JD, Sector-III, Salt Lake Kolkata-700106, India
| | - Asesh Bera
- Department of Chemical and Biological Sciences S.N. Bose National Centre for Basic Sciences Block-JD, Sector-III, Salt Lake Kolkata-700106, India
| | - Rajib Kumar Mitra
- Department of Chemical and Biological Sciences S.N. Bose National Centre for Basic Sciences Block-JD, Sector-III, Salt Lake Kolkata-700106, India
| |
Collapse
|
10
|
Wei R, Liu X, Cao L, Chen C, Chen IC, Li Z, Miao J, Lai Z. Zeolite membrane with sub-nanofluidic channels for superior blue energy harvesting. Nat Commun 2024; 15:10489. [PMID: 39622835 PMCID: PMC11612162 DOI: 10.1038/s41467-024-54755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Blue energy, a clean energy source derived from salinity gradients, has recently drawn increased research attention. It can be harvested using charged membranes, typically composed of amorphous materials that suffer from low power density due to their disordered structure and low charge density. Crystalline materials, with inherently ordered porous structures, offer a promising alternative for overcoming these limitations. Zeolite, a crystalline material with ordered sub-nanofluidic channels and tunable charge density, is particularly well-suited for this purpose. Here, we demonstrate that NaX zeolite functions as a high-performance membrane for blue energy generation. The NaX zeolite membrane achieves a power density of 21.27 W m⁻² under a 50-fold NaCl concentration gradient, exceeding the performance of state-of-the-art membranes under similar conditions. When tested under practical scenarios, it yields power densities of 29.1 W m⁻², 81.0 W m⁻², and 380.1 W m⁻² in the Red Sea/River, Dead Sea/River, and Qinghai Brine/River configurations, respectively. Notably, the membrane operates effectively in high alkaline conditions (~0.5 M NaOH) and selectively separates CO₃²⁻ from OH⁻ ions with a selectivity of 25. These results underscore zeolite membranes' potential for blue energy, opening further opportunities in this field.
Collapse
Affiliation(s)
- Ruicong Wei
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiaowei Liu
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Li Cao
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - I-Chun Chen
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhen Li
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jun Miao
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhiping Lai
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
11
|
Kamp D. A physical perspective on lithium therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:55-74. [PMID: 39547449 DOI: 10.1016/j.pbiomolbio.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
Lithium salts have strong medical properties in neurological disorders such as bipolar disorder and lithium-responsive headaches. They have recently gathered attention due to their potential preventive effect in viral infections. Though the therapeutic effect of lithium was documented by Cade in the late 1940s, its underlying mechanism of action is still disputed. Acute lithium exposure has an activating effect on excitable organic tissue and organisms, and is highly toxic. Lithium exposure is associated with a strong metabolic response in the organism, with large changes in phospholipid and cholesterol expression. Opposite to acute exposure, this metabolic response alleviates excessive cellular activity. The presence of lithium ions strongly affects lipid conformation and membrane phase unlike other alkali ions, with consequences for membrane permeability, buffer property and excitability. This review investigates how lithium ions affect lipid membrane composition and function, and how lithium response might in fact be the body's attempt to counteract the physical presence of lithium ions at cell level. Ideas for further research in microbiology and drug development are discussed.
Collapse
Affiliation(s)
- Dana Kamp
- The Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
12
|
Zhu B, Chen H, Shi L, Liu X. pH-Switchable Surfactant-Based Microemulsions: Reversible Transition between Microemulsification and Demulsification Triggered by Suitable Acids and Bases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25295-25302. [PMID: 39538370 DOI: 10.1021/acs.langmuir.4c03638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
pH-switchable surfactant-based microemulsions (SBMEs) are those that can switch reversibly between a monophasic state and a fully phase-separated state under the alternation of acids and bases, which is rarely reported. By using an equimolar mixture of sodium dodecyl sulfate and N,N-dimethyldodecylamine (SDS-C12A) as a pH-switchable surfactant, a pH-switchable SDS-C12A-based microemulsion (SDS-C12A-ME) has been fabricated for the first time. The main principles of the reversible switching are the reversible destruction/formation of the emulsifier, SDS-C12A-n-butanol, film at the oil-water interface due to the alternating protonation/deprotonation of C12A caused by acids and bases. The byproducts, H2O and salt, had an adverse effect on the reversibility of SDS-C12A-ME, with salt having a greater adverse effect than H2O. However, the reversibility of SDS-C12A-ME could be enhanced by suitable acids and bases. For example, for the same oil-in-water (O/W) SDS-C12A-ME, the number of switching cycles with HCl-choline hydroxide (ChOH) as a stimulus can be as large as 11, but only 3 with HCl-NaOH as a stimulus. By using the methyl methacrylate photochemical polymerization as a model, such a pH-switchable SBME can function as a recyclable reaction medium, while the resultant poly(methyl methacrylate) has a considerably reproducible molecular weight and narrow molecular weight distribution (polydispersity index is around 1.2) over three cycles. It is anticipated that the results presented in this work will serve as a reference for the design and fabrication of pH-switched SBMEs and also that such pH-switched SBMEs may have potential applications in practical technological areas such as industrial reaction media, drug delivery, microreactors, etc.
Collapse
Affiliation(s)
- Bo Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Hui Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Liwen Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
- Zanyu Technology Group Co. Ltd., Hangzhou 310009, P. R. China
| | - Xuefeng Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
13
|
Xiao T, Zhou Y, Jiang H. Ion-Specific Surface Tension of Aqueous Electrolyte Solutions: Analytical Insights from a Restricted Primitive Model. J Chem Theory Comput 2024; 20:10158-10166. [PMID: 39509712 DOI: 10.1021/acs.jctc.4c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The ion-specific surface tension of aqueous electrolyte solutions is of fundamental importance in physical chemistry, solution chemistry, electrochemistry, and biochemistry, yet it remains a challenge to be qualitatively predicted. In this work, an analytical theory of ion-specific surface tension is developed. By modeling the solution to a restricted primitive model (RPM), the surface tension increment of the electrolyte solution reduces to the surface tension of the RPM, which is further determined analytically by using the integral equation theory and the morphological thermodynamics theory. According to our formula, the surface tension increment of the electrolyte solution consists of a dominant and positive hard sphere contribution, which depends on the salt concentration, and a secondary electrostatic contribution, which depends on the inverse Debye length and the salt concentration. Our theory is applied to 1:1, 2:2, 1:2, 2:1, 3:1, and 3:2 electrolyte solutions with typical salt concentrations up to several mol/L and compared with experimental data. Without introducing any adjustable parameters, our theory leads to a good prediction of the surface tension increment of more than 50 kinds of aqueous solutions. Such a good agreement demonstrates the great potential of our theory for a fundamental understanding of specific ion effects in a variety of electrolyte solutions.
Collapse
Affiliation(s)
- Tiejun Xiao
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology, Guizhou Education University, Guiyang 550018, P. R. China
| | - Yun Zhou
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology, Guizhou Education University, Guiyang 550018, P. R. China
| | - Huijun Jiang
- Key Laboratory of Precision and Intelligent Chemistry & Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
14
|
May PM, May EF. Ion Trios: Cause of Ion Specific Interactions in Aqueous Solutions and Path to a Better pH Definition. ACS OMEGA 2024; 9:46373-46386. [PMID: 39583676 PMCID: PMC11579776 DOI: 10.1021/acsomega.4c07525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
Many important thermodynamic calculations for aqueous systems are profoundly limited because ion specific interactions have not been understood. Here an alternative modeling paradigm with compelling advantages is presented based on fundamental insights regarding ion-ion interactions at higher electrolyte concentrations. We also show how an intense ongoing controversy regarding single ion activity coefficients (SIACs) can be resolved and how SIACs can be quantified in full thermodynamic compliance using an overlooked convention. SIAC values can in fact be determined unequivocally and compatibly from two independent types of measurement at trace concentrations. These developments promise important advances, especially in defining pH and modeling multicomponent aqueous systems.
Collapse
Affiliation(s)
- Peter M. May
- Chemistry,
School of MSCP, Murdoch University, Murdoch, WA 6150, Australia
| | - Eric F. May
- Fluid Science
& Resources, School of Engineering, University of Western Australia, Crawley, WA 6009, Australia
- Future Energy
Export Cooperative Research Centre, 35 Stirling Hwy, Crawley, WA 6009, Australia
| |
Collapse
|
15
|
Singla D, Bhattacharya M. Preferential Binding of Cations Modulates Electrostatically Driven Protein Aggregation and Disaggregation. J Phys Chem B 2024; 128:10870-10879. [PMID: 39460751 DOI: 10.1021/acs.jpcb.4c06293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Protein aggregation resulting in either ordered amyloids or amorphous aggregates is not only restricted to deadly human diseases but also associated with biotechnological challenges encountered in the therapeutic and food industries. Elucidating the key structural determinants of protein aggregation is important to devise targeted inhibitory strategies, but it still remains a formidable task owing to the underlying hierarchy, stochasticity, and complexity associated with the self-assembly processes. Additionally, alterations in solution pH, salt types, and ionic strength modulate various noncovalent interactions, thus affecting the protein aggregation propensity and the aggregation kinetics. However, the molecular origin and a detailed understanding of the effects of weakly and strongly hydrated salts on protein aggregation and their plausible roles in the dissolution of aggregates remain elusive. In this study, using fluorescence and circular dichroism spectroscopy in combination with electron microscopy and light scattering techniques, we show that the ionic size, valency, and extent of hydration of cations play a crucial role in regulating the protein aggregation and disaggregation processes, which may elicit unique methods for governing the balance between protein self-assembly and disassembly.
Collapse
Affiliation(s)
- Deepika Singla
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Mily Bhattacharya
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| |
Collapse
|
16
|
Kumar A, Andersson GG. A review of ion scattering spectroscopy studies at liquid interfaces with noble gas ion projectiles. Adv Colloid Interface Sci 2024; 333:103302. [PMID: 39340972 DOI: 10.1016/j.cis.2024.103302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Ion scattering spectroscopy (ISS) is an analytical tool that provides direct structural, topographical, and atomic compositional information at interfaces when ions are used as projectiles. Since its development in 1967, ISS is commonly used to obtain quantitative information about solid interfaces. Over the last couple of decades, ISS has emerged as an important technique to probe liquid interfaces and their studies employing ISS has become not uncommon, more so with Neutral impact collision ion scattering spectroscopy (NICISS). Therefore, here the principle of ISS with a particular focus on NICISS and its data evaluation are summarised while reviewing some important studies at vapor-liquid interfaces that provide direct information for molecular orientation of liquids (including ionic liquids), composition and distribution of atoms (or solutes) and charges as a function of depth to gain vast variety of thermodynamical information. Employing ISS such information can be achieved with high depth resolution of ∼1-2 Å (depending on the nature of the experiment). These examples highlight the significance of ISS and show potential for its application for studies related to specific ion effects, atmospheric reaction in aerosol and sea water droplets, and even determining the fate of environmental pollutants like heavy metal ions and per-fluoroalkyl substances (PFAS). Furthermore, some limitations of ISS are also discussed relating to investigation of high-vapor pressure liquids and probing buried interfaces like liquid-liquid interfaces while presenting progresses made in probing solid-liquid interfaces.
Collapse
Affiliation(s)
- Anand Kumar
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia; CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
| | - Gunther G Andersson
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia; Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia.
| |
Collapse
|
17
|
Torres-Huerta A, Valkenier H. The Role of the Organic Moiety in the Diffusion and Transport of Carboxylates into Liposomes. Molecules 2024; 29:5124. [PMID: 39519764 PMCID: PMC11547798 DOI: 10.3390/molecules29215124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding carboxylate transport through lipid membranes under physiological conditions is critical in biomedicine and biotechnology, as it allows for the emulation of biological membrane functions and can enhance the absorption of hydrophobic carboxylate-based drugs. However, the structural diversity of carboxylates has made it challenging to study their transport, and the limited available examples do not provide a comprehensive understanding of the role of the organic moiety in this process. Here, we present an in-depth analysis of the diffusion and transport of various aliphatic and aromatic carboxylates into liposomes. We assessed the influence of their size, number of carboxylate groups, and presence of hydroxyl groups. Our findings from fluorescence assays, using lucigenin and HPTS as probes, revealed that most carboxylates can spontaneously diffuse into liposomes in their protonated state, facilitated by the efflux of HNO3 when using NaNO3 solutions at pH 7. The Cl-ISE assay showed chloride/carboxylate exchange by a synthetic anion transporter. Clear trends were observed when the organic moiety was systematically varied, with a particular enhancement of anion transport by the presence of hydroxyl groups in the aromatic carboxylates. Our findings provide insights into the processes by which carboxylates can enter liposomes, which can contribute to understanding the transport of other biologically relevant organic anions.
Collapse
Affiliation(s)
| | - Hennie Valkenier
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium;
| |
Collapse
|
18
|
Premadasa UI, Kumar N, Stamberga D, Bocharova V, Damron JT, Li T, Roy S, Ma YZ, Bryantsev VS, Doughty B. Hierarchical ion interactions in the direct air capture of CO2 at air/aqueous interfaces. J Chem Phys 2024; 161:164707. [PMID: 39450735 DOI: 10.1063/5.0231272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
The direct air capture (DAC) of CO2 using aqueous solvents is plagued by slow kinetics and interfacial barriers that limit effectiveness in combating climate change. Functionalizing air/aqueous surfaces with charged amphiphiles shows promise in accelerating DAC; however, insight into these interfaces and how they evolve in time remains poorly understood. Specifically, competitive ion interactions between DAC reagents and reaction products feedback onto the interfacial structure, thereby modulating interfacial chemical composition and overall function. In this work, we probe the role of glycine amino acid anions (Gly-), an effective CO2 capture reagent, that promotes the organization of cationic oligomers at air/aqueous interfaces. These surfaces are probed with vibrational sum frequency generation spectroscopy and molecular dynamics simulations. Our findings demonstrate that the competition for surface sites between Gly- and captured carbonaceous anions (HCO3-, CO32-, carbamates) drives changes in surface hydration, which in turn tunes oligomer ordering. This phenomenon is related to a hierarchical ordering of anions at the surface that are electrostatically attracted to the surface and their ability to compete for interfacial water. These results point to new ways to tune interfaces for DAC via stratification of ions based on relative surface propensities and specific ion effects.
Collapse
Affiliation(s)
- Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Nitesh Kumar
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Diana Stamberga
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Joshua T Damron
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Tianyu Li
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
19
|
Alasadi E, Baiz CR. Ion effects on minimally hydrated polymers: hydrogen bond populations and dynamics. SOFT MATTER 2024; 20:8291-8302. [PMID: 39387354 DOI: 10.1039/d4sm00830h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Compared to bulk water, the effect of ions in confined environments or heterogeneous aqueous solutions is less understood. In this study, we characterize the influence of ions on hydrogen bond populations and dynamics within minimally hydrated polyethylene glycol diacrylate (PEGDA) solutions using Fourier-transform infrared (FTIR) and two-dimensional infrared (2D IR) spectroscopies. We demonstrate that hydrogen bond populations and lifetimes are directly related to ion size and hydration levels within the polymer matrix. Specifically, larger monovalent cation sizes (Li+, Na+, K+) as well as anion sizes (F-, Cl-, Br-) increase hydrogen bond populations and accelerate hydrogen bond dynamics, with anions having more pronounced effects compared to cations. These effects can be attributed to the complex interplay between ion hydration shells and the polymer matrix, where larger ions with diffuse charge distributions are less efficiently solvated, leading to a more pronounced disruption of the local hydrogen bonding network. Additionally, increased overall water content results in a significant slowdown of dynamics. Increased water content enhances the hydrogen bonding network, yet simultaneously provides greater ionic mobility, resulting in a delicate balance between stabilization and dynamic restructuring of hydrogen bonds. These results contribute to the understanding of ion-specific effects in complex partially-hydrated polymer systems, highlighting the complex interplay between ion concentration, water structuring, and polymer hydration state. The study provides a framework for designing polymer membrane compositions with ion-specific properties.
Collapse
Affiliation(s)
- Eman Alasadi
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, TX 78712, USA.
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, TX 78712, USA.
| |
Collapse
|
20
|
Kiy A, Dutt S, Gregory KP, Notthoff C, Toimil-Molares ME, Kluth P. The Effect of Electrolyte Properties on Ionic Transport through Solid-State Nanopores: Experiment and Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20888-20896. [PMID: 39317436 DOI: 10.1021/acs.langmuir.4c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Nanopore membranes enable versatile technologies that are employed in many different applications, ranging from clean energy generation to filtration and sensing. Improving the performance can be achieved by conducting numerical simulations of the system, for example, by studying how the nanopore geometry or surface properties change the ionic transport behavior or fluid dynamics of the system. A widely employed tool for numerical simulations is finite element analysis (FEA) using software, such as COMSOL Multiphysics. We found that the prevalent method of implementing the electrolyte in the FEA can diverge significantly from physically accurate values. It is often assumed that salt molecules fully dissociate, and the effect of the temperature is neglected. Furthermore, values for the diffusion coefficients of the ions, as well as permittivity, density, and viscosity of the fluid, are assumed to be their bulk values at infinite dilution. By performing conductometry experiments with an amorphous SiO2 nanopore membrane with conical pores and simulating the pore system with FEA, it is shown that the common assumptions do not hold for different mono- and divalent chlorides (LiCl, NaCl, KCl, MgCl2, and CaCl2) at concentrations above 100 mM. Instead, a procedure is presented where all parameters are implemented based on the type of salt and concentration. This modification to the common approach improves the accuracy of the numerical simulations and thus provides a more comprehensive insight into ion transport in nanopores that is otherwise lacking.
Collapse
Affiliation(s)
- Alexander Kiy
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | - Shankar Dutt
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | - Kasimir P Gregory
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | - Christian Notthoff
- Department of Nuclear Physics and Accelerator Applications, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | | | - Patrick Kluth
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
21
|
Aubrecht FJ, Orme K, Saul A, Cai H, Ranathunge TA, Silberstein MN, McDonald BR. Ion-Specific Interactions Engender Dynamic and Tailorable Properties in Biomimetic Cationic Polyelectrolytes. Angew Chem Int Ed Engl 2024; 63:e202408673. [PMID: 38981860 DOI: 10.1002/anie.202408673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
Biomaterials such as spider silk and mussel byssi are fabricated by the dynamic manipulation of intra- and intermolecular biopolymer interactions. Organisms modulate solution parameters, such as pH and ion co-solute concentration, to effect these processes. These biofabrication schemes provide a conceptual framework to develop new dynamic and responsive abiotic soft material systems. Towards these ends, the chemical diversity of readily available ionic compounds offers a broad palette to manipulate the physicochemical properties of polyelectrolytes via ion-specific interactions. In this study, we show for the first time that the ion-specific interactions of biomimetic polyelectrolytes engenders a variety of phase separation behaviors, creating dynamic thermal- and ion-responsive soft matter that exhibits a spectrum of physical properties, spanning viscous fluids to viscoelastic and viscoplastic solids. These ion-dependent characteristics are further rendered general by the merger of lysine and phenylalanine into a single, amphiphilic vinyl monomer. The unprecedented breadth, precision, and dynamicity in the reported ion-dependent phase behaviors thus introduce a broad array of opportunities for the future development of responsive soft matter; properties that are poised to drive developments in critical areas such as chemical sensing, soft robotics, and additive manufacturing.
Collapse
Affiliation(s)
- Filip J Aubrecht
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912, USA
| | - Kennalee Orme
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912, USA
| | - Aiden Saul
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912, USA
| | - Hongyi Cai
- Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Tharindu A Ranathunge
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912, USA
| | - Meredith N Silberstein
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Benjamin R McDonald
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912, USA
| |
Collapse
|
22
|
Crescenzi O, Graziano G. The interaction of thiocyanate with peptides-A computational study. J Comput Chem 2024; 45:2214-2231. [PMID: 38795315 DOI: 10.1002/jcc.27440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/27/2024]
Abstract
According to the Hofmeister series, thiocyanate is the strongest "salting in" anion. In fact, it has a strong denaturant activity against the native state of globular proteins. A molecular level rationalization of the Hofmeister series is still missing, and therefore the denaturant activity of thiocyanate also awaits a robust explanation. In the last years, different types of experimental studies have shown that thiocyanate is capable to directly interact with both polar and nonpolar groups of polypeptide chains. This finding has been scrutinized via a careful computational procedure based on density functional theory approaches. The results indicate that thiocyanate is able to make H-bonds via both the nitrogen and sulfur atom, and to make strong van der Waals interactions with almost all the groups of polypeptide chains, regardless of their polarity.
Collapse
Affiliation(s)
- Orlando Crescenzi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Naples, Italy
| | - Giuseppe Graziano
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Benevento, Italy
| |
Collapse
|
23
|
Paratore TA, Schmidt GE, Ross AH, Gericke A. Thermal stability of bivalent cation/phosphoinositide domains in model membranes. Chem Phys Lipids 2024; 264:105424. [PMID: 39098579 DOI: 10.1016/j.chemphyslip.2024.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
As key mediators in a wide array of signaling events, phosphoinositides (PIPs) orchestrate the recruitment of proteins to specific cellular locations at precise moments. This intricate spatiotemporal regulation of protein activity often necessitates the localized enrichment of the corresponding PIP. We investigate the extent and thermal stabilities of phosphatidylinositol-4-phosphate (PI(4)P), phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2 and phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) clusters with calcium and magnesium ions. We observe negligible or minimal clustering of all examined PIPs in the presence of Mg2+ ions. While PI(4)P shows in the presence of Ca2+ no clustering, PI(4,5)P2 forms with Ca2+ strong clusters that exhibit stablity up to at least 80°C. The extent of cluster formation for the interaction of PI(3,4,5)P3 with Ca2+ is less than what was observed for PI(4,5)P2, yet we still observe some clustering up to 80°C. Given that cholesterol has been demonstrated to enhance PIP clustering, we examined whether bivalent cations and cholesterol synergistically promote PIP clustering. We found that the interaction of Mg2+ or Ca2+ with PI(4)P remains extraordinarily weak, even in the presence of cholesterol. In contrast, we observe synergistic interaction of cholesterol and Ca2+ with PI(4,5)P2. Also, in the presence of cholesterol, the interaction of Mg2+ with PI(4,5)P2 remains weak. PI(3,4,5)P3 does not show strong clustering with cholesterol for the experimental conditions of our study and the interaction with Ca2+ and Mg2+ was not influenced by the presence of cholesterol.
Collapse
Affiliation(s)
- Trevor A Paratore
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01609, USA
| | - Greta E Schmidt
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01609, USA
| | - Alonzo H Ross
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01609, USA
| | - Arne Gericke
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01609, USA.
| |
Collapse
|
24
|
Yang M, Wu Y, Chen M, Wang Y, Zhang L, Deng Y, Ye D, Zhan Y, Xiao G, Jiang X. Hofmeister Effect-Assisted Facile Fabrication of Self-Assembled Poly(Vinyl Alcohol)/Graphite Composite Sponge-Like Hydrogel for Solar Steam Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402151. [PMID: 39031581 DOI: 10.1002/smll.202402151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/08/2024] [Indexed: 07/22/2024]
Abstract
The use of hydrogel-based interfacial solar evaporators for desalination is a green, sustainable, and extremely concerned freshwater acquisition strategy. However, developing evaporators that are easy to manufacture, cheap, and have excellent porous structures still remains a considerable challenge. This work proposes a novel strategy for preparing a self-assembling sponge-like poly(vinyl alcohol)/graphite composite hydrogel based on the Hofmeister effect for the first time. The sponge-like hydrogel interfacial solar evaporator (PGCNG) is successfully obtained after combining with graphite. The whole process is environmental-friendly and of low-carbon free of freezing process. The PGCNG can be conventionally dried and stored. PGCNG shows impressive water storage performance and water transmission capacity, excellent steam generation performance and salt resistance. PGCNG has a high evaporation rate of 3.5 kg m-2 h-1 under 1 kW m-2 h-1 solar irradiation and PGCNG demonstrates stable evaporation performance over both 10 h of continuous brine evaporation and 30 cycles of brine evaporation. Its excellent performance and simple, scalable preparation strategy make it a valuable material for practical interface solar seawater desalination devices.
Collapse
Affiliation(s)
- Mohan Yang
- School of Chemical Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yaowei Wu
- School of Chemical Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Mengdie Chen
- School of Chemical Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yuhao Wang
- School of Chemical Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Lei Zhang
- School of Chemical Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yingxue Deng
- School of Chemical Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Dezhan Ye
- State Key Laboratory of New Textile Materials & Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Yanhu Zhan
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Gao Xiao
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xiancai Jiang
- School of Chemical Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
25
|
Cawley JL, Santa DE, Singh AN, Odudimu AT, Berger BA, Wittenberg NJ. Chaotropic Agent-Assisted Supported Lipid Bilayer Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20629-20639. [PMID: 39285818 PMCID: PMC11447895 DOI: 10.1021/acs.langmuir.4c02543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Supported lipid bilayers (SLBs) are useful structures for mimicking cellular membranes, and they can be integrated with a variety of sensors. Although there are a variety of methods for forming SLBs, many of these methods come with limitations in terms of the lipid compositions that can be employed and the substrates upon which the SLBs can be deposited. Here we demonstrate the use of an all-aqueous chaotropic agent exchange process that can be used to form SLBs on two different substrate materials: SiO2, which is compatible with traditional SLB formation by vesicle fusion, and Al2O3, which is not compatible with vesicle fusion. When examined with a quartz crystal microbalance with dissipation monitoring, the SLBs generated by chaotropic agent exchange (CASLBs) have similar frequency and dissipation shifts to SLBs formed by the vesicle fusion technique. The CASLBs block nonspecific protein adsorption on the substrate and can be used to sense protein-lipid interactions. Fluorescence microscopy was used to examine the CASLBs, and we observed long-range lateral diffusion of fluorescent probes, which confirmed that the CASLBs were composed of a continuous, planar lipid bilayer. Our CASLB method provides another option for forming planar lipid bilayers on a variety of surfaces, including those that are not amenable to the widely used vesicle fusion method.
Collapse
Affiliation(s)
- Jennie L Cawley
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Dane E Santa
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Aarshi N Singh
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Adeyemi T Odudimu
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Brett A Berger
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J Wittenberg
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
26
|
Huang B, Yun L, Yang Y, Han R, Chen K, Wang Z, Wang Y, Chen H, Du Y, Hao Y, Lv P, Ji P, Tan Y, Zheng L, Liu L, Li R, Yang J. Structural Study of Aqueous Electrolyte Solution by MeV Liquid Electron Scattering. J Phys Chem B 2024; 128:9197-9205. [PMID: 39268827 DOI: 10.1021/acs.jpcb.4c03681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The impact of ions on water has long been a subject of great interest, as it is closely tied to the hydration structure, dynamics, and properties of electrolyte solutions. Over centuries of investigation, the influence of ions on water's structure remains highly debated. Prevailing techniques, such as neutron and X-ray scattering, primarily focus on the microscopic structure of salt solutions at very high concentrations, mostly above 1 mol/L. In this study, we measured the structure of aqueous potassium iodide (KI) and potassium chloride (KCl) solutions using MeV liquid electron scattering (MeV-LES) across a concentration range of 0.10 to 0.75 mol/L. The obtained results provide detailed insights into the variations in ion-oxygen and oxygen-oxygen correlations as a function of concentration. The observed structural differences between KI and KCl solutions are in line with the structure maker/breaker theory, which suggests that iodide ions exert a more pronounced effect than chloride ions on disrupting the water shell. This work demonstrates the potency of MeV-LES for investigating the atomic structure in liquids, augmenting the modern analytical toolbox.
Collapse
Affiliation(s)
- Bo Huang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Longteng Yun
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yining Yang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Ruinong Han
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Keke Chen
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhiyuan Wang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Yian Wang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Haowei Chen
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yingchao Du
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Yuxia Hao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Peng Lv
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Pengju Ji
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuemei Tan
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Lianmin Zheng
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Lihong Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Renkai Li
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Jie Yang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Ramakrishnan S, Sasirajan Little Flower SR, Hanamantrao DP, Kasiviswanathan K, Sesu DC, Muthu K, Elumalai V, Vediappan K. Starch Gel Electrolyte and its Interaction with Trivalent Aluminum for Aqueous Aluminum-Ion Batteries: Enhanced Low Temperature Electrochemical Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402245. [PMID: 38747006 DOI: 10.1002/smll.202402245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/26/2024] [Indexed: 10/01/2024]
Abstract
This study explores trivalent Al interaction with aqueous starch gel in the presence of two different anions through salting effect. Salting-out nature of Al2(SO4)3·18H2O with starch gel causes precipitation of starch; this happens due to competitive anion-water complex formation over starch-water interaction, thereby reducing polymer solubility. Salting-in effect of AlCl3 with starch gel happens through Al3+ cation interaction with hydroxyl group of starch and increases polymer solubility, making gel electrolyte viable for battery applications. Prepared gel electrolyte exhibits ionic conductivity of 1.59 mS cm-1 and a high tAl 3+ value of 0.77. The gel electrolyte's performance is studied using two different cathodes, the Al|MoO3 cell employing starch gel electrolyte achieves discharge capacity of 193 mA h g-1 and Al|MnO2 cell achieves discharge capacity of 140 mA h g-1 @0.1 A g-1 for first cycle. The diffusion coefficient of both cells using starch gel electrolyte is calculated and found to be 2.1 × 10-11 cm2 s-1 for Al|MoO3 and 3.1 × 10-11 cm2 s-1 for Al|MnO2 cells. The Al|MoO3 cell at lower temperature shows improved electrochemical performance with a specific capacity retention of ≈87.8% over 90 cycles. This kind of aqueous gel electrolyte operating at low temperature broadens the application for next generation sustainable batteries.
Collapse
Affiliation(s)
- Saraswathi Ramakrishnan
- Electrochemical Energy Storage and Conversion Laboratory (EESCL), Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu, 603203, India
| | - Sajan Raj Sasirajan Little Flower
- Electrochemical Energy Storage and Conversion Laboratory (EESCL), Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu, 603203, India
| | - Desai Prashant Hanamantrao
- Electrochemical Energy Storage and Conversion Laboratory (EESCL), Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu, 603203, India
| | - Kavibharathy Kasiviswanathan
- Electrochemical Energy Storage and Conversion Laboratory (EESCL), Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu, 603203, India
| | - Divya Catherin Sesu
- The Department of Chemical Sciences, Ariel University, Ariel, 4070000, Israel
| | - Kesavan Muthu
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Varathan Elumalai
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science, and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Kumaran Vediappan
- Electrochemical Energy Storage and Conversion Laboratory (EESCL), Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu, 603203, India
| |
Collapse
|
28
|
Izzi G, Paladino A, Oliva R, Barra G, Ruggiero A, Del Vecchio P, Vitagliano L, Graziano G. Destabilization of the D2 domain of Thermotoga maritima arginine binding protein induced by guanidinium thiocyanate and its counteraction by stabilizing agents. Protein Sci 2024; 33:e5146. [PMID: 39150147 PMCID: PMC11328109 DOI: 10.1002/pro.5146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
D2 is a structural and cooperative domain of Thermotoga maritima Arginine Binding Protein, that possesses a remarkable conformational stability, with a denaturation temperature of 102.6°C, at pH 7.4. The addition of potassium thiocyanate causes a significant decrease in the D2 denaturation temperature. The interactions of thiocyanate ions with D2 have been studied by means of isothermal titration calorimetry measurements and molecular dynamics simulations. It emerged that: (a) 20-30 thiocyanate ions interact with the D2 surface and are present in its first solvation shell; (b) each of them makes several contacts with protein groups, both polar and nonpolar ones. The addition of guanidinium thiocyanate causes a marked destabilization of the D2 native state, because both the ions are denaturing agents. However, on adding to the solution containing D2 and guanidinium thiocyanate a stabilizing agent, such as TMAO, sucrose or sodium sulfate, a significant increase in denaturation temperature occurs. The present results confirm that counteraction is a general phenomenon for globular proteins.
Collapse
Affiliation(s)
- Guido Izzi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Giovanni Barra
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | | | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Giuseppe Graziano
- Department of Science and Technology, University of Sannio, via Francesco de Sanctis snc, Benevento, Italy
| |
Collapse
|
29
|
Han Q, Veríssimo NVP, Bryant SJ, Martin AV, Huang Y, Pereira JFB, Santos-Ebinuma VC, Zhai J, Bryant G, Drummond CJ, Greaves TL. Scattering approaches to unravel protein solution behaviors in ionic liquids and deep eutectic solvents: From basic principles to recent developments. Adv Colloid Interface Sci 2024; 331:103242. [PMID: 38964196 DOI: 10.1016/j.cis.2024.103242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Proteins in ionic liquids (ILs) and deep eutectic solvents (DESs) have gained significant attention due to their potential applications in various fields, including biocatalysis, bioseparation, biomolecular delivery, and structural biology. Scattering approaches including dynamic light scattering (DLS) and small-angle X-ray and neutron scattering (SAXS and SANS) have been used to understand the solution behavior of proteins at the nanoscale and microscale. This review provides a thorough exploration of the application of these scattering techniques to elucidate protein properties in ILs and DESs. Specifically, the review begins with the theoretical foundations of the relevant scattering approaches and describes the essential solvent properties of ILs and DESs linked to scattering such as refractive index, scattering length density, ion-pairs, liquid nanostructure, solvent aggregation, and specific ion effects. Next, a detailed introduction is provided on protein properties such as type, concentration, size, flexibility and structure as observed through scattering methodologies. This is followed by a review of the literature on the use of scattering for proteins in ILs and DESs. It is highlighted that enhanced data analysis and modeling tools are necessary for assessing protein flexibility and structure, and for understanding protein hydration, aggregation and specific ion effects. It is also noted that complementary approaches are recommended for comprehensively understanding the behavior of proteins in solution due to the complex interplay of factors, including ion-binding, dynamic hydration, intermolecular interactions, and specific ion effects. Finally, the challenges and potential research directions for this field are proposed, including experimental design, data analysis approaches, and supporting methods to obtain fundamental understandings of complex protein behavior and protein systems in solution. We envisage that this review will support further studies of protein interface science, and in particular studies on solvent and ion effects on proteins.
Collapse
Affiliation(s)
- Qi Han
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Nathalia V P Veríssimo
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto 14040-020, Brazil
| | - Saffron J Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Andrew V Martin
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Yuhong Huang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jorge F B Pereira
- Univ Coimbra, CERES, Department of Chemical Engineering, Pólo II - Pinhal de Marrocos, Coimbra 3030-790, Portugal
| | - Valéria C Santos-Ebinuma
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto 14040-020, Brazil
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
30
|
Wang Z, Lan T, Jiang J, Song T, Liu J, Zhang H, Lin K. On the modification of plant proteins: Traditional methods and the Hofmeister effect. Food Chem 2024; 451:139530. [PMID: 38703723 DOI: 10.1016/j.foodchem.2024.139530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/06/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
With increasing consumer health awareness and demand from some vegans, plant proteins have received a lot of attention. Plant proteins have many advantages over animal proteins. However, the application of plant proteins is limited by a number of factors and there is a need to improve their functional properties to enable a wider range of applications. This paper describes the advantages and disadvantages of traditional methods of modifying plant proteins and the appropriate timing for their use, and collates and describes a method with fewer applications in the food industry: the Hofmeister effect. It is extremely simple but efficient in some respects compared to traditional methods. The paper provides theoretical guidance for the further development of plant protein-based food products and a reference value basis for improving the functional properties of proteins to enhance their applications in the food industry, pharmaceuticals and other fields.
Collapse
Affiliation(s)
- Ziming Wang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Tiantong Lan
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Jing Jiang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Tingyu Song
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Hao Zhang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China.
| | - Ke Lin
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
31
|
Liu Z, Lin L, Li T, Premadasa UI, Hong K, Ma YZ, Sacci RL, Katsaras J, Carrillo JM, Doughty B, Collier CP. Physicochemical control of solvation and molecular assembly of charged amphiphilic oligomers at air-aqueous interfaces. J Colloid Interface Sci 2024; 669:552-560. [PMID: 38729003 DOI: 10.1016/j.jcis.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/07/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
HYPOTHESIS Understanding the rules that control the assembly of nanostructured soft materials at interfaces is central to many applications. We hypothesize that electrolytes can be used to alter the hydration shell of amphiphilic oligomers at the air-aqueous interface of Langmuir films, thereby providing a means to control the formation of emergent nanostructures. EXPERIMENTS Three representative salts - (NaF, NaCl, NaSCN) were studied for mediating the self-assembly of oligodimethylsiloxane methylimidazolium (ODMS-MIM+) amphiphiles in Langmuir films. The effects of the different salts on the nanostructure assembly of these films were probed using vibrational sum frequency generation (SFG) spectroscopy and Langmuir trough techniques. Experimental data were supported by atomistic molecular dynamic simulations. FINDINGS Langmuir trough surface pressure - area isotherms suggested a surprising effect on oligomer assembly, whereby the presence of anions affects the stability of the interfacial layer irrespective of their surface propensities. In contrast, SFG results implied a strong anion effect that parallels the surface activity of anions. These seemingly contradictory trends are explained by anion driven tail dehydration resulting in increasingly heterogeneous systems with entangled ODMS tails and appreciable anion penetration into the complex interfacial layer comprised of headgroups, tails, and interfacial water molecules. These findings provide physical and chemical insight for tuning a wide range of interfacial assemblies.
Collapse
Affiliation(s)
- Zening Liu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Lu Lin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Tianyu Li
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, United States
| | - Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - John Katsaras
- Neutron Scattering Division and Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Jan-Michael Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| |
Collapse
|
32
|
Lim LZ, Song J. NMR Dynamic View of the Stabilization of the WW4 Domain by Neutral NaCl and Kosmotropic Na 2SO 4 and NaH 2PO 4. Int J Mol Sci 2024; 25:9091. [PMID: 39201778 PMCID: PMC11354479 DOI: 10.3390/ijms25169091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The Hofmeister series categorizes ions based on their effects on protein stability, yet the microscopic mechanism remains a mystery. In this series, NaCl is neutral, Na2SO4 and Na2HPO4 are kosmotropic, while GdmCl and NaSCN are chaotropic. This study employs CD and NMR to investigate the effects of NaCl, Na2SO4, and Na2HPO4 on the conformation, stability, binding, and backbone dynamics (ps-ns and µs-ms time scales) of the WW4 domain with a high stability and accessible side chains at concentrations ≤ 200 mM. The results indicated that none of the three salts altered the conformation of WW4 or showed significant binding to the four aliphatic hydrophobic side chains. NaCl had no effect on its thermal stability, while Na2SO4 and Na2HPO4 enhanced the stability by ~5 °C. Interestingly, NaCl only weakly interacted with the Arg27 amide proton, whereas Na2SO4 bound to Arg27 and Phe31 amide protons with Kd of 32.7 and 41.6 mM, respectively. Na2HPO4, however, bound in a non-saturable manner to Trp9, His24, and Asn36 amide protons. While the three salts had negligible effects on ps-ns backbone dynamics, NaCl and Na2SO4 displayed no effect while Na2HPO4 significantly increased the µs-ms backbone dynamics. These findings, combined with our recent results with GdmCl and NaSCN, suggest a microscopic mechanism for the Hofmeister series. Additionally, the data revealed a lack of simple correlation between thermodynamic stability and backbone dynamics, most likely due to enthalpy-entropy compensation. Our study rationalizes the selection of chloride and phosphate as the primary anions in extracellular and intracellular spaces, as well as polyphosphate as a primitive chaperone in certain single-cell organisms.
Collapse
Affiliation(s)
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
33
|
Mengel SD, DeStefano AJ, Webber T, Semerdjiev A, Han S, Segalman RA. Salt-Screened Transition toward Bulk-Like Water Dynamics near Polymeric Zwitterions. ACS Macro Lett 2024; 13:928-934. [PMID: 38995998 DOI: 10.1021/acsmacrolett.4c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
The superior antifouling performance of zwitterionic materials is commonly linked to their hydration structure, in which tight surface binding of water molecules inhibits solute adsorption. However, there is comparatively little direct experimental data on the hydration water structure and dynamics around zwitterionic moieties, including the longer-range behavior of the hydration shell that modulates the approach of solutes to the polymer surface. This work experimentally probes the dynamics of the diffusing hydration water molecules around a series of zwitterion chemistries using Overhauser dynamic nuclear polarization relaxometry. Surprisingly, water dynamics measured within ∼1 nm of the zwitterions were minimally inhibited compared to those near uncharged hydrophilic or cationic side chains. Specific dissolved ions further enhance the water diffusivity near the zwitterions, rendering the hydration shell bulk water-like. These results that the hydration of a zwitterion surface is nearly indistinguishable from bulk water suggest that these surfaces are "invisible" to biological constituents in a manner tunable by the ionic environment and the chemical design of the zwitterionic surface.
Collapse
Affiliation(s)
- Shawn D Mengel
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Audra J DeStefano
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Thomas Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Anton Semerdjiev
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Songi Han
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Rachel A Segalman
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Materials, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
34
|
Piccoli V, Martínez L. Competitive Effects of Anions on Protein Solvation by Aqueous Ionic Liquids. J Phys Chem B 2024; 128:7792-7802. [PMID: 39092664 PMCID: PMC11331513 DOI: 10.1021/acs.jpcb.4c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The present study utilizes molecular dynamics simulations to examine how different anions compete for protein solvation in aqueous solutions of ionic liquids (ILs). Ubiquitin is used as model protein and studied in IL mixtures sharing the same cation, 1-ethyl-3-methylimidazolium (EMIM), and two different anions in the same solution, from combinations of dicyanamide (DCA), chloride (Cl), nitrate (NO3), and tetrafluoroborate (BF4). Our findings reveal that specific interactions between anions and the protein are paramount in IL solvation, but that combinations of anions are not additive. For example, DCA exhibits a remarkable ability to form hydrogen bonds with the protein, resulting in a significantly stronger preferential binding to the protein than other anions. However, the combination of DCA with NO3, which also forms hydrogen bonds with the protein, results in a smaller preferential solvation of the protein than the combination of DCA with chloride ions, which are weaker binders. Thus, combining anions with varying affinities for the protein surface modulates the overall ion accumulation through nonadditive mechanisms, highlighting the importance of the understanding of competition for specific interaction sites, cooperative binding, bulk-solution affinity, and overall charge compensations, on the overall solvation capacity of the solution. Such knowledge may allow for the design of novel IL-based processes in biotechnology and material science, where fine-tuning protein solvation is crucial for optimizing performance and functionality.
Collapse
Affiliation(s)
- Vinicius Piccoli
- Institute of Chemistry and
Center for Computing in Engineering & Science, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
| | - Leandro Martínez
- Institute of Chemistry and
Center for Computing in Engineering & Science, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
| |
Collapse
|
35
|
Zhang S, Fang M, He J, Ma L, Miao X, Li P, Yu S, Cai W. How specific ion effects influence the mechanical behaviors of amide macromolecules? A cross-scale study. RSC Adv 2024; 14:25507-25515. [PMID: 39139238 PMCID: PMC11321207 DOI: 10.1039/d4ra04360j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
The mechanisms of specific ion effects on the properties of amide macromolecules is essential to understanding the evolution of life. Because most biological macromolecules contain both complex hydrophilic and hydrophobic structures, it is challenging to accurately identify the contributions of molecular structure to macroscopic behaviors. Herein, we investigated the influence of specific ion effects on the mechanical behaviors of poly(N-isopropylacrylamide) and neutral polyacrylamide (i.e., PNIPAM and NPAM), through a cross-scale study that includes single-molecule force spectroscopy, molecular dynamics simulation and macro mechanical method. The results indicate that the molecular conformation can be markedly influenced by the hydrophilicity (or hydrophobicity) of both macromolecule chain and ions. An extended chain conformation can be obtained when the side groups and ions are relatively hydrophilic, which can also increase the elasticity of a macromolecule chain and film materials. The relatively hydrophobic components promote the collapse of macromolecule chains and reduce the molecular elasticity. It is believed that the hydrogen bonding intensity between a macromolecule chain and aquated ions controls the chain conformation and the elasticity of molecules and films. This study is not only helpful for understanding the self-assembly mechanism of organisms but also provides a way to associate the molecular properties with the macroscopic performance of materials.
Collapse
Affiliation(s)
- Song Zhang
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Mengjia Fang
- School of Food Science and Engineering, Hefei University of Technology Hefei Anhui 230009 P.R. China
| | - Junjun He
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Lina Ma
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University Hangzhou 310024 Zhejiang Province China
| | - Peichuang Li
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences) Heze 274000 China
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Wanhao Cai
- School of Food Science and Engineering, Hefei University of Technology Hefei Anhui 230009 P.R. China
| |
Collapse
|
36
|
Niu F, Hu X, Ritzoulis C, Tu W, Zhao X, Xia Y, Lu Y, Yin J, Pan W. Does arginine aggregate formation in aqueous solutions follow a two-step mechanism? Phys Chem Chem Phys 2024; 26:21240-21248. [PMID: 39073462 DOI: 10.1039/d4cp02119c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The formation of aggregates was studied in arginine aqueous solutions using light scattering. The main driving force for aggregate formation is hydrogen bonding between the arginine (Arg) amino acids, which is partially verified using density functional theory calculations. The measurement of energy loss during this process, coupled with Cryo-EM morphology data, indicates that these aggregates are in the solid state. The aggregation occurs in two steps, with a liquid intermediate stage. The investigation of the effect of pH and solute concentration on aggregate formation for other amino acid aqueous solutions verifies that aggregate formation is amino-acid specific, while small-sized clusters formed by weak interactions lead to large-sized aggregation. The water structure around amino acid molecules sheds light on the prediction of their aggregate formation. Homochirality is observed in the aggregates; its existence sheds light on the origin of protein homochirality.
Collapse
Affiliation(s)
- Fuge Niu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Xinyu Hu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Christos Ritzoulis
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
- Department of Food Science and Technology, International Hellenic University, Thessaloniki 57400, Greece
| | - Weiwei Tu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Xurui Zhao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University town, Wenzhou, 325035, China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Junfeng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Weichun Pan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
37
|
Gregory KP, Wanless EJ, Webber GB, Craig VSJ, Page AJ. A first-principles alternative to empirical solvent parameters. Phys Chem Chem Phys 2024; 26:20750-20759. [PMID: 38988220 DOI: 10.1039/d4cp01975j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The use of solvents is ubiquitous in chemistry. Empirical parameters, such as the Kamlet-Taft parameters and Gutmann donor/acceptor numbers, have long been used to predict and quantify the effects solvents have on chemical phenomena. Collectively however, such parameters are unsatisfactory, since each describes ultimately the same non-covalent solute-solvent and solute-solute interactions in completely disparate ways. Here we hypothesise that empirical solvent parameters are essentially proxy measures of the electrostatic terms that dominate solvent-solute interactions. On the basis of this hypothesis, we develop a new fundamental descriptor of these interactions, , and show that it is a self-consistent, probe-free, first principles alternative to established empirical solvent parameters.
Collapse
Affiliation(s)
- Kasimir P Gregory
- Discipline of Chemistry, College of Engineering, Science & Environment, University of Newcastle, Callaghan 2308, Australia.
- Research School of Materials Physics, Research School of Physics, Australian National University, ACT 0200, Australia
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Erica J Wanless
- Discipline of Chemistry, College of Engineering, Science & Environment, University of Newcastle, Callaghan 2308, Australia.
| | - Grant B Webber
- Discipline of Chemical Engineering, College of Engineering, Science & Environment, University of Newcastle, Callaghan 2308, Australia
| | - Vincent S J Craig
- Research School of Materials Physics, Research School of Physics, Australian National University, ACT 0200, Australia
| | - Alister J Page
- Discipline of Chemistry, College of Engineering, Science & Environment, University of Newcastle, Callaghan 2308, Australia.
| |
Collapse
|
38
|
Elliott GR, Wanless EJ, Webber GB, Andersson GG, Craig VSJ, Page AJ. Dynamic Ion Correlations and Ion-Pair Lifetimes in Aqueous Alkali Metal Chloride Electrolytes. J Phys Chem B 2024; 128:7438-7444. [PMID: 39037039 DOI: 10.1021/acs.jpcb.4c01992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Electrolytes are central to many technological applications, as well as life itself. The behavior and properties of electrolytes are often described in terms of ion pairs, whereby ions associate as either contact ion pairs (in which ions are "touching") solvent-separated ion pairs (in which ions' solvent shells overlap) or solvent-solvent-separated ion pairs (in which ions' solvent shells are distinct). However, this paradigm is generally restricted to statistically averaged descriptions of solution structure and ignores temporal behavior. Here we elucidate the time-resolved dynamics of these ion-ion interactions in aqueous metal chloride electrolytes using the partial van Hove correlation function, based on polarizable molecular dynamics simulations. Our results show that the existence and persistence of ion pairs in aqueous metal chloride electrolytes should not be assumed a priori, but in fact are ion specific features of the solution with lifetimes on subpicosecond time scales.
Collapse
Affiliation(s)
- Gareth R Elliott
- Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Erica J Wanless
- Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Grant B Webber
- Discipline of Chemical Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Gunther G Andersson
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Vincent S J Craig
- Department of Material Physics, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Alister J Page
- Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
39
|
Saridakis E, Donta K. Protein Thermodynamic Properties, Crystallisation, and the Hofmeister Series. Chempluschem 2024; 89:e202300733. [PMID: 38702291 DOI: 10.1002/cplu.202300733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The Hofmeister series is a series of ions ordered according to their ability to precipitate proteins. It has also been linked to a host of (bio)chemical phenomena. Several attempts over the years to correlate the series to the varying success of different salts in crystallising proteins have been largely inconclusive. A correlation, based on published data and crystallisation conditions for several proteins, is proposed here between some thermodynamic properties of proteins and the position in the Hofmeister series of the salts from which they preferentially crystallise. Namely, a high ratio between the entropic or enthalpic protein-solvent interactions contribution to thermodynamic stability and the total thermodynamic stability of a given protein, indicate the protein's high propensity to crystallise in solutions of highly kosmotropic salts. Low such ratios on the other hand, indicate that chaotropic salts can be equally successful, i. e. that the protein in question is rather indifferent to the Hofmeister character of the salt. Testing various model proteins for crystallisation against screens containing salts found at different points on the Hofmeister series, as well as further bibliographic analysis, have yielded results that appear to largely corroborate this hypothesis. These conclusions may conceivably be used as a crystallisation predictive tool.
Collapse
Affiliation(s)
- Emmanuel Saridakis
- Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research "Demokritos", Neapoleos 27, Ag. Paraskevi, Athens, 15341, Greece
| | - Katerina Donta
- Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research "Demokritos", Neapoleos 27, Ag. Paraskevi, Athens, 15341, Greece
- Department of Chemistry, University of Athens, Panepistimiopolis, Athens, 15771, Greece
| |
Collapse
|
40
|
Mosely JJ, Tschumper GS. Probing the Effects of Size and Charge on the Monohydration and Dihydration of SiF 5- and SiF 62- via Comparisons with BF 4- and PF 6. J Phys Chem A 2024; 128:5637-5645. [PMID: 38976798 DOI: 10.1021/acs.jpca.4c03430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This study systematically examines the interactions of the trigonal bipyramidal silicon pentafluoride and octahedral silicon hexafluoride anions with either one or two water molecules, (SiF5-(H2O)n and SiF62-(H2O)n, respectively, where n = 1, 2). Full geometry optimizations and subsequent harmonic vibrational frequency computations are performed using the CCSD(T) ab initio method with a triple-ζ correlation consistent basis set augmented with diffuse functions on all non-hydrogen atoms (cc-pVTZ for H and aug-cc-pVTZ for Si, O, and F; denoted as haTZ). Two monohydrate and six dihydrate minima have been identified for the SiF5-(H2O)n systems, whereas one monohydrate and five dihydrate minima have been identified for the SiF62-(H2O)n systems. Both monohydrated anions have a minimum in which the water molecule adopts a symmetric double ionic hydrogen bond (DIHB) motif with C2v symmetry. However, a second unique monohydrate minimum has been identified for SiF5- in which the water molecule adopts an asymmetric DIHB motif along the edge of the trigonal bipyramidal anion between one axial and one equatorial F atom. This Cs structure is more than 2 kcal mol-1 lower in energy than the C2v local minimum at the CCSD(T)/haTZ level of theory. While the interactions between the solvent and ionic solute are quite strong for the monohydrated anions (electronic dissociation energies of ≈12 and ≈24 kcal mol-1 for the SiF5-(H2O)1 and SiF62-(H2O)1 global minima, respectively), these values are nearly perfectly doubled for the dihydrates, with the lowest-energy SiF5-(H2O)2 and SiF62-(H2O)2 minima exhibiting dissociation energies of ≈24 and ≈47 kcal mol-1, respectively. Structures that form hydrogen bonds between the solvating water molecules also exhibit the largest shifts in the harmonic OH stretching frequencies for the waters of hydration. These shifts can exceed -100 cm-1 for the SiF5-(H2O)2 minimum and -300 cm-1 for the SiF62-(H2O)2 minimum relative to an isolated H2O molecule at the CCSD(T)/haTZ level of theory. This work also corrects the OH stretching frequency shifts for two dihydrate minima of PF6- that were previously erroneously reported ( J. Phys. Chem. A 2020, 124, 8744-8752, DOI: 10.1021/acs.jpca.0c06466).
Collapse
Affiliation(s)
- Jacquelyn J Mosely
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Gregory S Tschumper
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| |
Collapse
|
41
|
Okami K, Fumoto S, Yamashita M, Nakashima M, Miyamoto H, Kawakami S, Nishida K. One-Step Formation Method of Plasmid DNA-Loaded, Extracellular Vesicles-Mimicking Lipid Nanoparticles Based on Nucleic Acids Dilution-Induced Assembly. Cells 2024; 13:1183. [PMID: 39056764 PMCID: PMC11274598 DOI: 10.3390/cells13141183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
We propose a nucleic acids dilution-induced assembly (NADIA) method for the preparation of lipid nanoparticles. In the conventional method, water-soluble polymers such as nucleic acids and proteins are mixed in the aqueous phase. In contrast, the NADIA method, in which self-assembly is triggered upon dilution, requires dispersion in an alcohol phase without precipitation. We then investigated several alcohols and discovered that propylene glycol combined with sodium chloride enabled the dispersion of plasmid DNA and protamine sulfate in the alcohol phase. The streamlined characteristics of the NADIA method enable the preparation of extracellular vesicles-mimicking lipid nanoparticles (ELNPs). Among the mixing methods using a micropipette, a syringe pump, and a microfluidic device, the lattermost was the best for decreasing batch-to-batch differences in size, polydispersity index, and transfection efficiency in HepG2 cells. Although ELNPs possessed negative ζ-potentials and did not have surface antigens, their transfection efficiency was comparable to that of cationic lipoplexes. We observed that lipid raft-mediated endocytosis and macropinocytosis contributed to the transfection of ELNPs. Our strategy may overcome the hurdles linked to supply and quality owing to the low abundance and heterogeneity in cell-based extracellular vesicles production, making it a reliable and scalable method for the pharmaceutical manufacture of such complex formulations.
Collapse
Affiliation(s)
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; (K.O.); (H.M.); (S.K.); (K.N.)
| | | | | | | | | | | |
Collapse
|
42
|
Clark JA, Douglas JF. Do Specific Ion Effects on Collective Relaxation Arise from Perturbation of Hydrogen-Bonding Network Structure? J Phys Chem B 2024; 128:6362-6375. [PMID: 38912895 PMCID: PMC11229691 DOI: 10.1021/acs.jpcb.4c02638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
The change in the transport properties (i.e., water diffusivity, shear viscosity, etc.) when adding salts to water has been used to classify ions as either being chaotropic or kosmotropic, a terminology based on the presumption that this phenomenon arises from respective breakdown or enhancement of the hydrogen-bonding network structure. Recent quasi-elastic neutron scattering measurements of the collective structural relaxation time, τC, in aqueous salt solutions were interpreted as confirming this proposed origin of ion effects on the dynamics of water. However, we find similar changes in τC in the same salt solutions based on molecular dynamics (MD) simulations using a coarse-grained water model in which no hydrogen bonding exists, challenging this conventional interpretation of mobility change resulting from the addition of salts to water. A thorough understanding of specific ion effects should be useful in diverse material manufacturing and biomedical applications, where these effects are prevalent, but poorly understood.
Collapse
Affiliation(s)
- Jennifer A. Clark
- Materials Science and Engineering
Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science and Engineering
Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
43
|
Lim LZ, Song J. NMR Dynamic View of the Destabilization of WW4 Domain by Chaotropic GdmCl and NaSCN. Int J Mol Sci 2024; 25:7344. [PMID: 39000450 PMCID: PMC11242413 DOI: 10.3390/ijms25137344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
GdmCl and NaSCN are two strong chaotropic salts commonly used in protein folding and stability studies, but their microscopic mechanisms remain enigmatic. Here, by CD and NMR, we investigated their effects on conformations, stability, binding and backbone dynamics on ps-ns and µs-ms time scales of a 39-residue but well-folded WW4 domain at salt concentrations ≤200 mM. Up to 200 mM, both denaturants did not alter the tertiary packing of WW4, but GdmCl exerted more severe destabilization than NaSCN. Intriguingly, GdmCl had only weak binding to amide protons, while NaSCN showed extensive binding to both hydrophobic side chains and amide protons. Neither denaturant significantly affected the overall ps-ns backbone dynamics, but they distinctively altered µs-ms backbone dynamics. This study unveils that GdmCl and NaSCN destabilize a protein before the global unfolding occurs with differential binding properties and µs-ms backbone dynamics, implying the absence of a simple correlation between thermodynamic stability and backbone dynamics of WW4 at both ps-ns and µs-ms time scales.
Collapse
Affiliation(s)
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
44
|
Lu C, Chen Z, Wu Y, Zhang Y, Wang F, Hu C, Qu J. Response of Ionic Hydration Structure and Selective Transport Behavior to Aqueous Solution Chemistry during Nanofiltration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11791-11801. [PMID: 38871647 DOI: 10.1021/acs.est.4c01783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The effect of aqueous solution chemistry on the ionic hydration structure and its corresponding nanofiltration (NF) selectivity is a research gap concerning ion-selective transport. In this study, the hydration distribution of two typical monovalent anions (Cl- and NO3-) under different aqueous solution chemical conditions and the corresponding transmembrane selectivity during NF were investigated by using in situ liquid time-of-flight secondary ion mass spectrometry in combination with molecular dynamics simulations. We demonstrate the inextricable link between the ion hydration structure and the pore steric effect and further find that ionic transmembrane transport can be regulated by breaking the balance between the hydrogen bond network (i.e., water-water) and ion hydration (i.e., ion-water) interactions of hydrated ion. For strongly hydrated (H2O)nCl- with more intense ion-water interactions, a higher salt concentration and coexisting ion competition led to a larger hydrated size and, thus, a higher ion rejection by the NF membrane, whereas weakly hydrated (H2O)nNO3- takes the reverse under the same conditions. Stronger OH--anion hydration competition resulted in a smaller hydrated size of (H2O)nCl- and (H2O)nNO3-, showing a lower observed average hydration number at pH 10.5. This study deepens the long-overlooked understanding of NF separation mechanisms, concerning the hydration structure.
Collapse
Affiliation(s)
- Chenghai Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - You Wu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fuyi Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Chiaverini L, Tolbatov I, Marrone A, Marzo T, Biver T, La Mendola D. Unveiling the mechanism of activation of the Te(IV) prodrug AS101. New chemical insights towards a better understanding of its medicinal properties. J Inorg Biochem 2024; 256:112567. [PMID: 38669911 DOI: 10.1016/j.jinorgbio.2024.112567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
AS101 (Ammonium trichloro (dioxoethylene-O,O') tellurate) is an important hypervalent Te-based prodrug. Recently, we started a systematic investigation on AS101 with the aim to correlate its promising biological effects as a potent immunomodulator drug with multiple medicinal applications and its specific chemical properties. To date, a substantial agreement on the rapid conversion of the initial AS101 species into the corresponding TeOCl3- anion does exist, and this latter species is reputed as the pharmacologically active one. However, we realized that TeOCl3- could quickly undergo further steps of conversion in an aqueous medium, eventually producing the TeO2 species. Using a mixed experimental and theoretical investigation approach, we characterized the conversion process leading to TeO2 occurring both in pure water and in reference buffers at physiological-like pH. Our findings may offer a valuable "chemical tool" for a better description, interpretation -and optimization- of the mechanism of action of AS101 and Te-based compounds. This might be a starting point for improved AS101-based medicinal application.
Collapse
Affiliation(s)
- Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa. Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Iogann Tolbatov
- Department of Physics and Astronomy, University of Padova, via F. Marzolo 8, 35131 Padova, Italy
| | - Alessandro Marrone
- Department of Pharmacy, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa. Via Bonanno Pisano 6, 56126 Pisa, Italy.
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa. Via Bonanno Pisano 6, 56126 Pisa, Italy
| |
Collapse
|
46
|
Rudani BA, Jakubowski A, Kriegs H, Wiegand S. Deciphering the guanidinium cation: Insights into thermal diffusion. J Chem Phys 2024; 160:214502. [PMID: 38828819 DOI: 10.1063/5.0215843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Thermophoresis, or thermodiffusion, is becoming a more popular method for investigating the interactions between proteins and ligands due to its high sensitivity to the interactions between solutes and water. Despite its growing use, the intricate mechanisms behind thermodiffusion remain unclear. This gap in knowledge stems from the complexities of thermodiffusion in solvents that have specific interactions as well as the intricate nature of systems that include many components with both non-ionic and ionic groups. To deepen our understanding, we reduce complexity by conducting systematic studies on aqueous salt solutions. In this work, we focused on how guanidinium salt solutions behave in a temperature gradient, using thermal diffusion forced Rayleigh scattering experiments at temperatures ranging from 15 to 35 °C. We looked at the thermodiffusive behavior of four guanidinium salts (thiocyanate, iodide, chloride, and carbonate) in solutions with concentrations ranging from 1 to 3 mol/kg. The guanidinium cation is disk-shaped and is characterized by flat hydrophobic surfaces and three amine groups, which enable directional hydrogen bonding along the edges. We compare our results to the behavior of salts with spherical cations, such as sodium, potassium, and lithium. Our discussions are framed around how different salts are solvated, specifically in the context of the Hofmeister series, which ranks ions based on their effects on the solvation of proteins.
Collapse
Affiliation(s)
- Binny A Rudani
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Andre Jakubowski
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Hartmut Kriegs
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Simone Wiegand
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| |
Collapse
|
47
|
Jordan J, Gibb CL, Tran T, Yao W, Rose A, Mague JT, Easson MW, Gibb BC. Anion Binding to Ammonium and Guanidinium Hosts: Implications for the Reverse Hofmeister Effects Induced by Lysine and Arginine Residues. J Org Chem 2024; 89:6877-6891. [PMID: 38662908 PMCID: PMC11110012 DOI: 10.1021/acs.joc.4c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
Anions have a profound effect on the properties of soluble proteins. Such Hofmeister effects have implications in biologics stability, protein aggregation, amyloidogenesis, and crystallization. However, the interplay between the important noncovalent interactions (NCIs) responsible for Hofmeister effects is poorly understood. To contribute to improving this state of affairs, we report on the NCIs between anions and ammonium and guanidinium hosts 1 and 2, and the consequences of these. Specifically, we investigate the properties of cavitands designed to mimic two prime residues for anion-protein NCIs─lysines and arginines─and the solubility consequences of complex formation. Thus, we report NMR and ITC affinity studies, X-ray analysis, MD simulations, and anion-induced critical precipitation concentrations. Our findings emphasize the multitude of NCIs that guanidiniums can form and how this repertoire qualitatively surpasses that of ammoniums. Additionally, our studies demonstrate the ease by which anions can dispense with a fraction of their hydration-shell waters, rearrange those that remain, and form direct NCIs with the hosts. This raises many questions concerning how solvent shell plasticity varies as a function of anion, how the energetics of this impact the different NCIs between anions and ammoniums/guanidiniums, and how this affects the aggregation of solutes at high anion concentrations.
Collapse
Affiliation(s)
- Jacobs
H. Jordan
- The
Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 1100 Allen Toussaint Blvd., New Orleans, Louisiana 70124, United States
| | - Corinne L.D. Gibb
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Thien Tran
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Wei Yao
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Austin Rose
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Joel T. Mague
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Michael W. Easson
- The
Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 1100 Allen Toussaint Blvd., New Orleans, Louisiana 70124, United States
| | - Bruce C. Gibb
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
48
|
Mortara L, Mukhina T, Chaimovich H, Brezesinski G, van der Vegt NFA, Schneck E. Anion Competition at Positively Charged Surfactant Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6949-6961. [PMID: 38502024 DOI: 10.1021/acs.langmuir.3c04003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Interactions of anions with hydrophobic surfaces of proteins and water-soluble polymers depend on the ability of the ions to shed their hydration shells. At positively charged surfactant monolayers, the interactions of anions are less well understood. Due to the interplay of electrostatic surface forces, hydration effects, and ion-ion interactions in the electrostatic double layer, a comprehensive microscopic picture remains elusive. Herein, we study the interactions of chloride, bromide, and a mixture of these two anions at the aqueous interface of dihexadecyldimethylammonium (DHDA+) and dioctadecyldimethylammonium (DODA+) cationic monolayers. Using molecular dynamics simulations and three surface-sensitive X-ray scattering techniques, we demonstrate that bromide interacts preferentially over chloride with both monolayers. The structure of the two monolayers and their interfacial electron density profiles obtained from the simulations quantitatively reproduce the experimental data. We observe that chloride and bromide form contact ion pairs with the quaternary ammonium groups on both monolayers. However, ion pairing with bromide leads to a greater reduction in the number of water molecules hydrating the anion, resulting in more energetically stable ion pairs. This leads to long-range (>3 nm) lateral correlations between bromide ions on the structured DODA+ monolayer. These observations indicate that ion hydration is the dominant factor determining the interfacial electrolyte structure.
Collapse
Affiliation(s)
- Laura Mortara
- Chemistry Institute, University of São Paulo, São Paulo, SP 05508-000, Brazil
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| | - Tetiana Mukhina
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| | - Hernan Chaimovich
- Chemistry Institute, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Gerald Brezesinski
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| | | | - Emanuel Schneck
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| |
Collapse
|
49
|
Acar M, Tatini D, Budroni MA, Ninham BW, Rustici M, Rossi F, Lo Nostro P. Specific anion effects on urease activity: A Hofmeister study. Colloids Surf B Biointerfaces 2024; 236:113789. [PMID: 38367291 DOI: 10.1016/j.colsurfb.2024.113789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/19/2024]
Abstract
The effects of a range of electrolytes on the hydrolysis of urea by the enzyme urease is explored. The autocatalytic behavior of urease in unbuffered solutions and its pH clock reactions are studied. The concentration dependence of the experimental variables is analyzed in terms of specific ion-enzyme interactions and hydration. The results offer insights into the molecular mechanisms of the enzyme, and on the nature of its interactions with the electrolytes. We found that urease can tolerate mild electrolytes in its environment, while it is strongly inhibited by both strong kosmotropic and strong chaotropic anions. This study may cast light on an alternative therapy for Helicobacter pylori infections and contribute to the design of innovative materials and provide new approaches for the modulation of the enzymatic activity.
Collapse
Affiliation(s)
- Mert Acar
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Firenze 50019, Italy
| | - Duccio Tatini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Firenze 50019, Italy
| | - Marcello A Budroni
- Department of Chemistry and Pharmacy, University of Sassari, Sassari 07100, Italy
| | - Barry W Ninham
- Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia
| | - Mauro Rustici
- Department of Chemistry and Pharmacy, University of Sassari, Sassari 07100, Italy
| | - Federico Rossi
- Department of Earth, Environmental and Physical Sciences-DEEP Sciences, University of Siena, Italy
| | - Pierandrea Lo Nostro
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Firenze 50019, Italy.
| |
Collapse
|
50
|
Lou D, Duan H, Wang D, Cao Y, Cui J, Duan J, Tan J. Characterization of a novel 3-quinuclidinone reductase possessing remarkable thermostability. Int J Biol Macromol 2024; 264:130799. [PMID: 38479663 DOI: 10.1016/j.ijbiomac.2024.130799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
The 3-quinuclidinone reductase plays an irreplaceable role in the biopreparation of (R)-3-quinuclidinol, an intermediate vital for synthesis of various pharmaceuticals. Thermal robustness is a critical factor for enzymatic synthesis in industrial applications. This study characterized a new 3-quinuclidinone reductase, named SaQR, with significant thermal stability. The SaQR was overexpressed in a GST-fused state, and substrate and cofactor screening were conducted. Additionally, three-dimensional structure prediction using AlphaFold and analysis were performed, along with relevant thermostability tests, and the evaluation of factors influencing enzyme activity. The findings highlight the remarkable thermostability of SaQR, retaining over 90% of its activity after 72 h at 50°C, with an optimal operational temperature of 85°C. SaQR showed typical structural traits of the SDR superfamily, with its cofactor-determining residue being aspartic acid, conferring nicotinamide adenine dinucleotide (NAD(H)) preference. Moreover, K+ and Na+, at a concentration of 400 mM, could significantly enhance the activity, while Mg2+ and Mn2+ only display inhibitory effects within the tested concentration range. The findings of molecular dynamics simulations suggest that high temperatures may disrupt the binding of enzyme to substrate by increasing the flexibility of residues 205-215. In conclusion, this study reports a novel 3-quinuclidinone reductase with remarkable thermostability.
Collapse
Affiliation(s)
- Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Hongtao Duan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Dong Wang
- School of Information Science and Engineering, University of Jinan, Jinan 250022, China; Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Jinan 250022, China.
| | - Yangyang Cao
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Jinghao Cui
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Jingfa Duan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| |
Collapse
|