1
|
Al‐Jaaidi A, Toldo JM, Barbatti M. Ultrafast Dynamics of Diketopyrrolopyrrole Dimers. J Comput Chem 2025; 46:e27547. [PMID: 39673543 PMCID: PMC11645985 DOI: 10.1002/jcc.27547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
Diketopyrrolopyrroles (DPPs) have attracted attention for their potential applications in organic photovoltaics due to their tunable optical properties and charge-carrier mobilities. In this study, we investigate the excited-state dynamics of a DPP dimer using time-dependent density functional theory (TDDFT) and nonadiabatic molecular dynamics simulations. Our results reveal a near-barrierless hydrogen migration state intersection that facilitates ultrafast internal conversion with a lifetime of about 400 fs, leading to fluorescence quenching. Electronic density analysis along the relaxation pathway confirms a hydrogen atom transfer mechanism. These findings highlight the critical role of state intersections in the photophysical properties of DPP dimers, providing new insights for the design of functionalized DPP systems aimed at suppressing nonradiative decay for enhanced performance in photovoltaic applications.
Collapse
Affiliation(s)
| | - Josene M. Toldo
- Aix Marseille University, CNRS, ICRMarseilleFrance
- UCBL, ENS de Lyon, CNRS, LCH, UMR 5182Lyon Cedex 07France
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICRMarseilleFrance
- Institut Universitaire de FranceParisFrance
| |
Collapse
|
2
|
Gutiérrez-Quintanilla A, Moge B, Compagnon I, Noble JA. Vibrational and electronic spectra of protonated vanillin: exploring protonation sites and isomerisation. Phys Chem Chem Phys 2024; 26:15358-15368. [PMID: 38767194 DOI: 10.1039/d3cp05573f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Photofragmentation spectra of protonated vanillin produced under electrospray ionisation (ESI) conditions have been recorded in the 3000-3700 cm-1 (vibrational) and 225-460 nm (electronic) ranges, using room temperature IRMPD (infrared multiphoton dissociation) and cryogenic UVPD (ultraviolet photodissociation) spectroscopies, respectively. The cold (∼50 K) electronic UVPD spectrum exhibits very well resolved vibrational structure for the S1 ← S0 and S3 ← S0 transitions, suggesting long excited state dynamics, similar to its simplest analogue, protonated benzaldehyde. The experimental data were combined with theoretical calculations to determine the protonation site and configurational isomer observed in the experiments.
Collapse
Affiliation(s)
- Alejandro Gutiérrez-Quintanilla
- CNRS, Aix Marseille Univ., PIIM, Physique des Interactions Ioniques et Moléculaires, UMR 7345, 13397 Marseille, France.
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Baptiste Moge
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Isabelle Compagnon
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Jennifer A Noble
- CNRS, Aix Marseille Univ., PIIM, Physique des Interactions Ioniques et Moléculaires, UMR 7345, 13397 Marseille, France.
| |
Collapse
|
3
|
Mukherjee S, Mattos RS, Toldo JM, Lischka H, Barbatti M. Prediction Challenge: Simulating Rydberg photoexcited cyclobutanone with surface hopping dynamics based on different electronic structure methods. J Chem Phys 2024; 160:154306. [PMID: 38624122 DOI: 10.1063/5.0203636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
This research examines the nonadiabatic dynamics of cyclobutanone after excitation into the n → 3s Rydberg S2 state. It stems from our contribution to the Special Topic of the Journal of Chemical Physics to test the predictive capability of computational chemistry against unseen experimental data. Decoherence-corrected fewest-switches surface hopping was used to simulate nonadiabatic dynamics with full and approximated nonadiabatic couplings. Several simulation sets were computed with different electronic structure methods, including a multiconfigurational wavefunction [multiconfigurational self-consistent field (MCSCF)] specially built to describe dissociative channels, multireference semiempirical approach, time-dependent density functional theory, algebraic diagrammatic construction, and coupled cluster. MCSCF dynamics predicts a slow deactivation of the S2 state (10 ps), followed by an ultrafast population transfer from S1 to S0 (<100 fs). CO elimination (C3 channel) dominates over C2H4 formation (C2 channel). These findings radically differ from the other methods, which predicted S2 lifetimes 10-250 times shorter and C2 channel predominance. These results suggest that routine electronic structure methods may hold low predictive power for the outcome of nonadiabatic dynamics.
Collapse
Affiliation(s)
| | - Rafael S Mattos
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
| | - Josene M Toldo
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
- Institut Universitaire de France, Paris 75231, France
| |
Collapse
|
4
|
Lamas I, Montero R, Martínez-Martínez V, Longarte A. Photodynamics of azaindoles in polar media: the influence of the environment. Phys Chem Chem Phys 2024; 26:3240-3252. [PMID: 38193884 DOI: 10.1039/d3cp03412g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
We have studied the relaxation dynamics of a family of azaindole (AI) structural isomers, 4-, 5-, 6- and 7-AI, by steady-state and time-resolved methods (fs-transient absorption and fluorescence up-conversion), in solvents of different polarity. The measurements in aprotic solvents show distinctive fluorescence yields and excited state lifetimes among the isomers, which are tuned by the polarity of the medium. Guided by simple TD-DFT calculations and based on the behavior observed in the isolated species, it has been possible to address the influence of the environment polarity on the relaxation route. According to the obtained picture, the energy of the nπ* state, which is strongly dependent on the position of the pyridinic nitrogen, controls the rate of the internal conversion channel that accounts for the distinctive photophysical behavior of the isomers. On the other hand, preliminary measurements in protic media (methanol) show a very different photodynamical behavior, in which the anomalous measured fluorescent patterns are very likely the result of reactive channels (proton transfer) triggered by the electronic excitation.
Collapse
Affiliation(s)
- Iker Lamas
- Departamento de Química-Física Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU) Apart. 644, 48080 Bilbao, Spain.
| | - Raúl Montero
- SGIKER Laser Facility Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU) 48940, Leioa, Spain.
| | - Virginia Martínez-Martínez
- Departamento de Química-Física Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU) Apart. 644, 48080 Bilbao, Spain.
| | - Asier Longarte
- Departamento de Química-Física Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU) Apart. 644, 48080 Bilbao, Spain.
| |
Collapse
|
5
|
Toldo JM, Mattos RS, Pinheiro M, Mukherjee S, Barbatti M. Recommendations for Velocity Adjustment in Surface Hopping. J Chem Theory Comput 2024; 20:614-624. [PMID: 38207213 DOI: 10.1021/acs.jctc.3c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
This study investigates velocity adjustment directions after hopping in surface hopping dynamics. Using fulvene and a protonated Schiff base (PSB4) as case studies, we investigate the population decay and reaction yields of different sets of dynamics with the velocity adjusted in either the nonadiabatic coupling, gradient difference, or momentum directions. For the latter, in addition to the conventional algorithm, we investigated the performance of a reduced kinetic energy reservoir approach recently proposed. Our evaluation also considered velocity adjustment in the directions of approximate nonadiabatic coupling vectors. While results for fulvene are susceptible to the adjustment approach, PSB4 is not. We correlated this dependence to the topography near the conical intersections. When nonadiabatic coupling vectors are unavailable, the gradient difference direction is the best adjustment option. If the gradient difference is also unavailable, a semiempirical vector direction or the momentum direction with a reduced kinetic energy reservoir becomes an excellent option to prevent an artificial excess of back hoppings. The precise velocity adjustment direction is less crucial for describing the nonadiabatic dynamics than the kinetic energy reservoir's size.
Collapse
Affiliation(s)
- Josene M Toldo
- Aix-Marseille University, CNRS, ICR, Marseille 13397, France
| | - Rafael S Mattos
- Aix-Marseille University, CNRS, ICR, Marseille 13397, France
| | - Max Pinheiro
- Aix-Marseille University, CNRS, ICR, Marseille 13397, France
| | | | - Mario Barbatti
- Aix-Marseille University, CNRS, ICR, Marseille 13397, France
- Institut Universitaire de France, Paris 75231, France
| |
Collapse
|
6
|
Papineau TV, Jacquemin D, Vacher M. Which Electronic Structure Method to Choose in Trajectory Surface Hopping Dynamics Simulations? Azomethane as a Case Study. J Phys Chem Lett 2024; 15:636-643. [PMID: 38205955 DOI: 10.1021/acs.jpclett.3c03014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Nonadiabatic dynamics simulations have become a standard approach to explore photochemical reactions. Such simulations require underlying potential energy surfaces and couplings between them, calculated at a chosen level of theory, yet this aspect is rarely assessed. Here, in combination with the popular trajectory surface hopping dynamics method, we use a high-accuracy XMS-CASPT2 electronic structure level as a benchmark for assessing the performances of various post-Hartree-Fock methods (namely, CIS, ADC(2), CC2, and CASSCF) and exchange-correlation functionals (PBE, PBE0, and CAM-B3LYP) in a TD-DFT/TDA context, using the isomerization around a double bond as test case. Different relaxation pathways are identified, and the ability of the different methods to reproduce their relative importance and time scale is discussed. The results show that multireference electronic structure methods should be preferred, when studying nonadiabatic decay between excited and ground states. If not affordable, TD-DFT with TDA and hybrid functionals and ADC(2) are efficient alternatives but overestimate the nonradiative decay yield and thus may miss deexcitation pathways.
Collapse
Affiliation(s)
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, Nantes F-44000, France
- Institut Universitaire de France (IUF), Paris F-75005, France
| | - Morgane Vacher
- Nantes Université, CNRS, CEISAM UMR 6230, Nantes F-44000, France
| |
Collapse
|
7
|
Ultrafast internal conversion without energy crossing. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|