1
|
Nandi S, Stenquist A, Papoulia A, Olofsson E, Badano L, Bertolino M, Busto D, Callegari C, Carlström S, Danailov MB, Demekhin PV, Di Fraia M, Eng-Johnsson P, Feifel R, Gallician G, Giannessi L, Gisselbrecht M, Manfredda M, Meyer M, Miron C, Peschel J, Plekan O, Prince KC, Squibb RJ, Zangrando M, Zapata F, Zhong S, Dahlström JM. Generation of entanglement using a short-wavelength seeded free-electron laser. SCIENCE ADVANCES 2024; 10:eado0668. [PMID: 38630815 PMCID: PMC11023495 DOI: 10.1126/sciadv.ado0668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Quantum entanglement between the degrees of freedom encountered in the classical world is challenging to observe due to the surrounding environment. To elucidate this issue, we investigate the entanglement generated over ultrafast timescales in a bipartite quantum system comprising two massive particles: a free-moving photoelectron, which expands to a mesoscopic length scale, and a light-dressed atomic ion, which represents a hybrid state of light and matter. Although the photoelectron spectra are measured classically, the entanglement allows us to reveal information about the dressed-state dynamics of the ion and the femtosecond extreme ultraviolet pulses delivered by a seeded free-electron laser. The observed generation of entanglement is interpreted using the time-dependent von Neumann entropy. Our results unveil the potential for using short-wavelength coherent light pulses from free-electron lasers to generate entangled photoelectron and ion systems for studying spooky action at a distance.
Collapse
Affiliation(s)
- Saikat Nandi
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
| | - Axel Stenquist
- Department of Physics, Lund University, 22100 Lund, Sweden
| | | | - Edvin Olofsson
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - Laura Badano
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | | | - David Busto
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - Carlo Callegari
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | | | | | - Philipp V. Demekhin
- Institute of Physics and CINSaT, University of Kassel, 34132 Kassel, Germany
| | | | | | - Raimund Feifel
- Department of Physics, University of Gothenburg, 41258 Gothenburg, Sweden
| | | | - Luca Giannessi
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
- INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
| | | | | | | | - Catalin Miron
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
- ELI-NP, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 077125 Mǎgurele, Romania
| | - Jasper Peschel
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - Oksana Plekan
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - Kevin C. Prince
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - Richard J. Squibb
- Department of Physics, University of Gothenburg, 41258 Gothenburg, Sweden
| | - Marco Zangrando
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
- IOM-CNR, Istituto Officina dei Materiali, 34149 Basovizza, Trieste, Italy
| | - Felipe Zapata
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - Shiyang Zhong
- Department of Physics, Lund University, 22100 Lund, Sweden
| | | |
Collapse
|
2
|
Schwickert D, Przystawik A, Diaman D, Kip D, Marangos JP, Laarmann T. Coupled Electron-Nuclear Dynamics Induced and Monitored with Femtosecond Soft X-ray Pulses in the Amino Acid Glycine. J Phys Chem A 2024; 128:989-995. [PMID: 38315166 PMCID: PMC10875660 DOI: 10.1021/acs.jpca.3c06517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024]
Abstract
The coupling of electronic and nuclear motion in polyatomic molecules is at the heart of attochemistry. The molecular properties, transient structures, and reaction mechanism of these many-body quantum objects are defined on the level of electrons and ions by molecular wave functions and their coherent superposition, respectively. In the present contribution, we monitor nonadiabatic quantum wave packet dynamics during molecular charge motion by reconstructing both the oscillatory charge density distribution and the characteristic time-dependent nuclear configuration coordinate from time-resolved Auger electron spectroscopic data recorded in previous studies on glycine molecules [Schwickert et al. Sci. Adv. 2022, 8, eabn6848]. The electronic and nuclear motion on the femtosecond time scale was induced and probed in kinematically complete soft X-ray experiments at the FLASH free-electron laser facility. The detailed analysis of amplitude, instantaneous phase, and instantaneous frequency of the propagating many-body wave packet during its lifecycle provides unprecedented insight into dynamical processes beyond the Born-Oppenheimer approximation. We are confident that the refined experimental data evaluation helps to develop new theoretical tools to describe time-dependent molecular wave functions in complicated but ubiquitous non-Born-Oppenheimer photochemical conditions.
Collapse
Affiliation(s)
- David Schwickert
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
| | - Andreas Przystawik
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
| | - Dian Diaman
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
| | - Detlef Kip
- Faculty
of Electrical Engineering, Helmut Schmidt
University, Holstenhofweg
85, Hamburg 22043, Germany
| | - Jon P. Marangos
- Department
of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom
| | - Tim Laarmann
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
- The
Hamburg Centre for Ultrafast Imaging CUI, Luruper Chaussee 149, Hamburg 22761, Germany
| |
Collapse
|
3
|
Ertel D, Busto D, Makos I, Schmoll M, Benda J, Ahmadi H, Moioli M, Frassetto F, Poletto L, Schröter CD, Pfeifer T, Moshammer R, Mašín Z, Patchkovskii S, Sansone G. Influence of nuclear dynamics on molecular attosecond photoelectron interferometry. SCIENCE ADVANCES 2023; 9:eadh7747. [PMID: 37647394 PMCID: PMC10468127 DOI: 10.1126/sciadv.adh7747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/19/2023] [Indexed: 09/01/2023]
Abstract
In extreme ultraviolet spectroscopy, the photoionization process occurring in a molecule due to the absorption of a single photon can trigger an ultrafast nuclear motion in the cation. Taking advantage of attosecond photoelectron interferometry, where the absorption of the extreme ultraviolet photon is accompanied by the exchange of an additional infrared quantum of light, one can investigate the influence of nuclear dynamics by monitoring the characteristics of the photoelectron spectra generated by the two-color field. Here, we show that attosecond photoelectron interferometry is sensitive to the nuclear response by measuring the two-color photoionization spectra in a mixture of methane (CH4) and deuteromethane (CD4). The effect of the different nuclear evolution in the two isotopologues manifests itself in the modification of the amplitude and contrast of the oscillations of the photoelectron peaks. Our work indicates that nuclear dynamics can affect the coherence properties of the electronic wave packet emitted by photoionization on a time scale as short as a few femtoseconds.
Collapse
Affiliation(s)
- Dominik Ertel
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - David Busto
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
- Department of Physics, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Ioannis Makos
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Marvin Schmoll
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Jakub Benda
- Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovǐkách 2, 180 00, Prague 8, Czech Republic
| | - Hamed Ahmadi
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Matteo Moioli
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Fabio Frassetto
- Istituto di Fotonica e Nanotecnologie, CNR, 35131 Padova, Italy
| | - Luca Poletto
- Istituto di Fotonica e Nanotecnologie, CNR, 35131 Padova, Italy
| | | | - Thomas Pfeifer
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | | | - Zdeněk Mašín
- Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovǐkách 2, 180 00, Prague 8, Czech Republic
| | | | - Giuseppe Sansone
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Kobayashi Y, Leone SR. Characterizing coherences in chemical dynamics with attosecond time-resolved x-ray absorption spectroscopy. J Chem Phys 2022; 157:180901. [DOI: 10.1063/5.0119942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Coherence can drive wave-like motion of electrons and nuclei in photoexcited systems, which can yield fast and efficient ways to exert materials’ functionalities beyond the thermodynamic limit. The search for coherent phenomena has been a central topic in chemical physics although their direct characterization is often elusive. Here, we highlight recent advances in time-resolved x-ray absorption spectroscopy (tr-XAS) to investigate coherent phenomena, especially those that utilize the eminent light source of isolated attosecond pulses. The unparalleled time and state sensitivities of tr-XAS in tandem with the unique element specificity render the method suitable to study valence electronic dynamics in a wide variety of materials. The latest studies have demonstrated the capabilities of tr-XAS to characterize coupled electronic–structural coherence in small molecules and coherent light–matter interactions of core-excited excitons in solids. We address current opportunities and challenges in the exploration of coherent phenomena, with potential applications for energy- and bio-related systems, potential crossings, strongly driven solids, and quantum materials. With the ongoing developments in both theory and light sources, tr-XAS holds great promise for revealing the role of coherences in chemical dynamics.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Stephen R. Leone
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, University of California, Berkeley, California 94720, USA
| |
Collapse
|