1
|
Hordijk Y, Dalla Tiezza M, Rodrigues Silva D, Hamlin TA. Radical Addition Reactions: Hierarchical Ab Initio Benchmark and DFT Performance Study. Chemphyschem 2025; 26:e202400728. [PMID: 39230961 DOI: 10.1002/cphc.202400728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
We performed a hierarchical ab initio benchmark study of the gas-phase radical addition reactions of X⋅+C2H2 and X⋅+C2H4 (X⋅ = CH3⋅, NH2⋅, OH⋅, SH⋅). The hierarchical series of ab initio methods (HF, MP2, CCSD, CCSD(T)) were paired with a hierarchal series of Dunning basis sets with and without diffuse functions ((aug)-cc-pVDZ, (aug)-cc-pVTZ, (aug)-cc-pVQZ). The HF ground-state wavefunctions were transformed into quasi-restricted orbital (QRO) reference wavefunctions to address spin contamination. Following extrapolation to the CBS limit, the energies from our highest- QRO-CCSD(T)/CBS+ level converged within 0.0-3.4 kcal mol-1 and 0.0-1.0 kcal mol-1 concerning the ab initio method and basis set, respectively. Our QRO-CCSD(T)/CBS+ reference data was used to evaluate the performance of 98 density functional theory (DFT) approximations. The MAE of the best functionals for reaction barriers and energies were: OLYP (1.9 kcal mol-1), BMK (1.0 kcal mol-1), M06-2X (0.9 kcal mol-1), MN12-SX (0.8 kcal mol-1) and CAM-B3LYP (0.8 kcal mol-1). These functionals also accurately reproduce key geometrical parameters of the stationary points within an average 2 % deviation from the reference QRO-CCSD(T)/cc-pVTZ level.
Collapse
Affiliation(s)
- Yuman Hordijk
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| | - Marco Dalla Tiezza
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| | - Daniela Rodrigues Silva
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| | - Trevor A Hamlin
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| |
Collapse
|
2
|
Malloum A, Conradie J. Assessing Computational Methods to Calculate the Binding Energies of Dimers of Five-Membered Heterocyclic Molecules. J Phys Chem A 2024; 128:10775-10784. [PMID: 39659037 DOI: 10.1021/acs.jpca.4c05409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Computational electronic structure methods, including ab initio and density functional theory (DFT), have been assessed in calculating the binding energies of 14 five-membered heterocyclic dimers. The configurations were generated using classical molecular dynamics before optimization at the MP2/aug-cc-pVTZ. Benchmark binding energies are calculated at the CCSD(T)/CBS level of theory. Among the ab initio methods, the DLPNO-CCSD(T)/CBS method has the best performance, reproducing CCSD(T)/CBS with a mean absolute deviation (MAD) of 0.17 kcal/mol. In addition, a schematic CCSD(T)/CBS approach perfectly reproduces the canonical CCSD(T)/CBS with a mean absolute error of 0.08 kcal/mol. Regarding DFT functionals, it has been found that counterpoise corrections have negligible effects on the accuracy of the functionals. Furthermore, including the D3 empirical dispersion considerably enhances the accuracy of the DFT functionals. As a result, outstanding performance is noted for the double hybrid functional B2K-PLYP, with a mean absolute error of 0.25 kcal/mol. In addition to the B2K-PLYP double hybrid functional, M05-D3, B97D, M05-2X-D3, M05-2X, M06-HF, M08-HX, M11, TPSSh-D3, and RSX-0DH-D3(BJ) have MAD values lower than 0.5 kcal/mol. These functionals are recommended for further investigations of five-membered heterocyclic clusters.
Collapse
Affiliation(s)
- Alhadji Malloum
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein 9300, South Africa
- Department of Physics, Faculty of Science, University of Maroua, PO BOX 46, Maroua 46, Cameroon
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein 9300, South Africa
| |
Collapse
|
3
|
Vermeersch L, Wang T, Van den Brande N, De Vleeschouwer F, van Duin ACT. Computational Insights into Tunable Reversible Network Materials: Accelerated ReaxFF Kinetics of Furan-Maleimide Diels-Alder Reactions for Self-Healing and Recyclability. J Phys Chem A 2024; 128:10431-10439. [PMID: 39567488 DOI: 10.1021/acs.jpca.4c05470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In this study, ReaxFF molecular dynamics simulations were benchmarked and used to study the relative kinetics of the retro Diels-Alder reaction between furan and N-methylmaleimide. This reaction is very important for the creation of polymer networks with self-healing and recyclable properties, since they can be used as reversible linkers in the network. So far, the reversible Diels-Alder reaction has not yet been studied by using reactive molecular dynamics simulations. This work is, thus, the first step in simulating a covalent adaptable network (CAN) using Diels-Alder reactions as reversible linkers. For both endo and exo, the bond breaking in 40 product molecules was simulated using the bond boost method and the endo/exo ratio was evaluated. This ratio was benchmarked against density functional theory (DFT) and experimental results for a changing set of bond boost parameters. Given their importance to understand how the CAN performs, the effect of the addition of a polymer backbone and the effect of temperature were successfully simulated using our newly parametrized reactive force field.
Collapse
Affiliation(s)
- L Vermeersch
- Algemene Chemie & Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - T Wang
- Department of Mechanical Engineering, Pennsylvania State University (PSU), University Park, Pennsylvania 16802, United States
| | - N Van den Brande
- Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | | | - A C T van Duin
- Department of Mechanical Engineering, Pennsylvania State University (PSU), University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Allen AM, Olive LN, Gonzalez Franco PA, Barua SR, Allen WD, Schaefer HF. Fulminic acid: a quasibent spectacle. Phys Chem Chem Phys 2024; 26:24109-24125. [PMID: 39248729 DOI: 10.1039/d4cp02700k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Fulminic acid (HCNO) played a critical role in the early development of organic chemistry, and chemists have sought to discern the structure and characteristics of this molecule and its isomers for over 200 years. The mercurial nature of the extremely flat H-C-N bending potential of fulminic acid, with a nearly vanishing harmonic vibrational frequency at linearity, remains enigmatic and refractory to electronic structure theory, as dramatic variation with both orbital basis set and electron correlation method is witnessed. To solve this problem using rigorous electronic wavefunction methods, we have employed focal point analyses (FPA) to ascertain the ab initio limit of optimized linear and bent geometries, corresponding vibrational frequencies, and the HCN + O(3P) → HCNO reaction energy. Electron correlation treatments as extensive as CCSDT(Q), CCSDTQ(P), and even CCSDTQP(H) were employed, and complete basis set (CBS) extrapolations were performed using the cc-pCVXZ (X = 4-6) basis sets. Core electron correlation, scalar relativistic effects (MVD1), and diagonal Born-Oppenheimer corrections (DBOC) were all included and found to contribute significantly in determining whether vibrationless HCNO is linear or bent. At the all-electron (AE) CCSD(T)/CBS level, HCNO is a linear molecule with ω5(H-C-N bend) = 120 cm-1. However, composite AE-CCSDT(Q)/CBS computations give an imaginary frequency (51i cm-1) at the linear optimized geometry, leading to an equilibrium structure with an H-C-N angle of 173.9°. Finally, at the AE-CCSDTQ(P)/CBS level, HCNO is once again linear with ω5 = 45 cm-1, and inclusion of both MVD1 and DBOC effects yields ω5 = 32 cm-1. A host of other topics has also been investigated for fulminic acid, including the dependence of re and ωi predictions on a variety of CBS extrapolation formulas, the question of multireference character, the N-O bond energy and enthalpy of formation, and issues that give rise to the quasibent appellation.
Collapse
Affiliation(s)
- Ashley M Allen
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA.
| | - Laura N Olive
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA.
| | | | - Shiblee R Barua
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA.
| | - Wesley D Allen
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA.
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
5
|
Beutick SE, Yu S, Orian L, Bickelhaupt FM, Hamlin TA. Retro-Cope elimination of cyclic alkynes: reactivity trends and rational design of next-generation bioorthogonal reagents. Chem Sci 2024:d4sc04211e. [PMID: 39239482 PMCID: PMC11369967 DOI: 10.1039/d4sc04211e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
The retro-Cope elimination reaction between dimethylhydroxylamine (DMHA) and various cyclic alkynes has been quantum chemically explored using DFT at ZORA-BP86/TZ2P. The purpose of this study is to understand the role of the following three unique activation modes on the overall reactivity, that is (i) additional cycloalkyne predistortion via fused cycles, (ii) exocyclic heteroatom substitution on the cycloalkyne, and (iii) endocyclic heteroatom substitution on the cycloalkyne. Trends in reactivity are analyzed and explained by using the activation strain model (ASM) of chemical reactivity. Based on our newly formulated design principles, we constructed a priori a suite of novel bioorthogonal reagents that are highly reactive towards the retro-Cope elimination reaction with DMHA. Our findings offer valuable insights into the design principles for highly reactive bioorthogonal reagents in chemical synthesis.
Collapse
Affiliation(s)
- Steven E Beutick
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108 Amsterdam 1081 HZ The Netherlands
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova Via Marzolo 1 Padova 35129 Italy
| | - Song Yu
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108 Amsterdam 1081 HZ The Netherlands
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova Via Marzolo 1 Padova 35129 Italy
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108 Amsterdam 1081 HZ The Netherlands
- Institute of Molecules and Materials, Radboud University Heyendaalseweg 135 Nijmegen 6525 AJ The Netherlands
- Department of Chemical Sciences, University of Johannesburg Auckland Park Johannesburg 2006 South Africa
| | - Trevor A Hamlin
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108 Amsterdam 1081 HZ The Netherlands
| |
Collapse
|
6
|
Powderly M, Roseau M, Frison G, Hammami R, Chausset-Boissarie L, Harrowven D, Legros J, Chataigner I. Controlling Diastereoselectivity in Dearomatizing Diels-Alder Reactions of Nitroarenes with 2-Trimethylsilyloxycyclohexadiene. Chemistry 2024; 30:e202303697. [PMID: 38619531 DOI: 10.1002/chem.202303697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
Dearomative Diels-Alder cycloadditions between nitroarenes and 2-trimethylsilyloxycyclohexadiene are carried out under high pressure at room temperature in the absence of any chemical promoter. Reactions are performed with different arenes, including the highly aromatic naphthalenes and quinolines. They lead to 3D-scaffolds with exquisite exo-diastereoselectivity. The exo approach is characterized by lower distortion of the substrates in a late TS and by more favorable orbital interactions presumably between the nitro group and the dienic part, explaining the stereoselectivity.
Collapse
Affiliation(s)
- Marian Powderly
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3 M FR 3038, 76000, Rouen, France
- Chemistry, University of Southampton, Highfield, Southampton, UK
| | - Mélanie Roseau
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3 M FR 3038, 76000, Rouen, France
| | - Gilles Frison
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, F-75005, Paris, France
| | - Rayhane Hammami
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3 M FR 3038, 76000, Rouen, France
| | - Laetitia Chausset-Boissarie
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3 M FR 3038, 76000, Rouen, France
| | - David Harrowven
- Chemistry, University of Southampton, Highfield, Southampton, UK
| | - Julien Legros
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3 M FR 3038, 76000, Rouen, France
| | - Isabelle Chataigner
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3 M FR 3038, 76000, Rouen, France
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, F-75005, Paris, France
| |
Collapse
|
7
|
Gallegos M, Vassilev-Galindo V, Poltavsky I, Martín Pendás Á, Tkatchenko A. Explainable chemical artificial intelligence from accurate machine learning of real-space chemical descriptors. Nat Commun 2024; 15:4345. [PMID: 38773090 PMCID: PMC11522690 DOI: 10.1038/s41467-024-48567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/24/2024] [Indexed: 05/23/2024] Open
Abstract
Machine-learned computational chemistry has led to a paradoxical situation in which molecular properties can be accurately predicted, but they are difficult to interpret. Explainable AI (XAI) tools can be used to analyze complex models, but they are highly dependent on the AI technique and the origin of the reference data. Alternatively, interpretable real-space tools can be employed directly, but they are often expensive to compute. To address this dilemma between explainability and accuracy, we developed SchNet4AIM, a SchNet-based architecture capable of dealing with local one-body (atomic) and two-body (interatomic) descriptors. The performance of SchNet4AIM is tested by predicting a wide collection of real-space quantities ranging from atomic charges and delocalization indices to pairwise interaction energies. The accuracy and speed of SchNet4AIM breaks the bottleneck that has prevented the use of real-space chemical descriptors in complex systems. We show that the group delocalization indices, arising from our physically rigorous atomistic predictions, provide reliable indicators of supramolecular binding events, thus contributing to the development of Explainable Chemical Artificial Intelligence (XCAI) models.
Collapse
Affiliation(s)
- Miguel Gallegos
- Department of Analytical and Physical Chemistry, University of Oviedo, E-33006, Oviedo, Spain
| | | | - Igor Poltavsky
- Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Luxembourg
| | - Ángel Martín Pendás
- Department of Analytical and Physical Chemistry, University of Oviedo, E-33006, Oviedo, Spain.
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Luxembourg.
| |
Collapse
|
8
|
Frenklach A, Amlani H, Kozuch S. Quantum Tunneling Instability in Pericyclic Reactions. J Am Chem Soc 2024; 146:11823-11834. [PMID: 38634836 DOI: 10.1021/jacs.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Several cycloreversion reactions of the retro-Diels-Alder type were computationally assessed to understand their quantum tunneling (QT) reactivity. N2, CO, and other leaving groups were considered based on their strong exothermicity, as it reduces their thermodynamic and kinetic stabilities. Our results indicate that for many of these reactions, it is essential to take into account their QT decomposition rate, which can massively weaken their molecular stability and shorten their half-lives even at deep cryogenic temperatures. In practical terms, this indicates that many supposedly stable molecules will actually be unsynthesizable or unisolable, and therefore trying to prepare or detect them would be a futile attempt. In addition, we discuss the importance of tunneling to correctly understand the enthalpy of activation and the collective atomic effect on the tunneling kinetic isotope effects to test if third-row atoms can tunnel in a chemical reaction. This project raises the question of the importance of in silico chemistry to guide in vitro chemistry, especially in cases where the latter cannot solve its own uncertainties.
Collapse
Affiliation(s)
- Alexander Frenklach
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel
| | - Hila Amlani
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel
| | - Sebastian Kozuch
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel
| |
Collapse
|
9
|
Liao Q, Xie P, Wang Z. Enantiodetermining processes in the synthesis of alanine, serine, and isovaline. Phys Chem Chem Phys 2023; 25:28829-28834. [PMID: 37853775 DOI: 10.1039/d3cp03212d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In this study, quantum chemical calculations were used to explore the synthesis of three chiral α-amino acids, specifically alanine, serine, and isovaline, from reactants found in interstellar space. Our focus is on the crucial step in the synthesis pathway that determines the chirality of the amino acids. The results indicate that in the case of alanine, the determination of enantiomer is primarily influenced by the direction of the collision of molecules or functional groups, which leads to the formation of a chirality center in a crucial intermediate. However, contrary to chemical expectations, the enantiodetermining/enantioselection step for serine and isovaline synthesis occurs prior to the creation of a chirality center.
Collapse
Affiliation(s)
- Qingli Liao
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China.
| | - Peng Xie
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zhao Wang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
10
|
Mlostoń G, Urbaniak K, Palusiak M, Witczak ZJ, Würthwein EU. (3+2)-Cycloadditions of Levoglucosenone (LGO) with Fluorinated Nitrile Imines Derived from Trifluoroacetonitrile: An Experimental and Computational Study. Molecules 2023; 28:7348. [PMID: 37959767 PMCID: PMC10647924 DOI: 10.3390/molecules28217348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The in situ-generated N-aryl nitrile imines derived from trifluoroacetonitrile smoothly undergo (3+2)-cycloadditions onto the enone fragment of the levoglucosenone molecule, yielding the corresponding, five-membered cycloadducts. In contrast to the 'classic' C(Ph),N(Ph) nitrile imine, reactions with fluorinated C(CF3),N(Ar) analogues lead to stable pyrazolines in a chemo- and stereoselective manner. Based on the result of X-ray single crystal diffraction analysis, their structures were established as exo-cycloadducts with the location of the N-Ar terminus of the 1,3-dipole at the α-position of the enone moiety. The DFT computation demonstrated that the observed reaction pathway results from the strong dominance of kinetic control over thermodynamic control.
Collapse
Affiliation(s)
- Grzegorz Mlostoń
- Department of Organic & Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, PL-91-403 Lodz, Poland;
| | - Katarzyna Urbaniak
- Department of Organic & Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, PL-91-403 Lodz, Poland;
| | - Marcin Palusiak
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, PL-90-236 Lodz, Poland;
| | - Zbigniew J. Witczak
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, 84 W. South Street, Wilkes-Barre, PA 18766, USA;
| | - Ernst-Ulrich Würthwein
- Organisch-Chemisches Institut and Center for Multiscale Theory and Computation (CMTC), Universität Münster, Corrensstrasse 40, D-48149 Münster, Germany
| |
Collapse
|
11
|
Angles SN, Guo W, Darko K, Erzuah M, Pauley KG, Promise IE, Goodell JR, Tantillo DJ, Mitchell TA. Net Intermolecular Silyloxypyrone-Based (5+2) Cycloadditions Utilizing Amides as Enabling and Cleavable Tethers. Org Lett 2023; 25:7137-7141. [PMID: 37750489 DOI: 10.1021/acs.orglett.3c02635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Silyloxypyrone-based (5+2) cycloadditions were facilitated by amides that allowed for increased reactivity and a pathway for cleaving the tether to afford net intermolecular cycloadducts. Various amides underwent facile cycloaddition, and several experiments revealed steric and electronic factors that accelerate the reaction. tert-Butyl amides reacted faster than less hindered variants in multiple cases. In the case of dearomative oxidopyrylium-indole (5+2) cycloadditions, an amine-based tether was ineffective, whereas amides enabled this powerful transformation. Theoretical calculations evidenced a concerted asynchronous reaction in which the amide facilitates a conformational driving force enabling cycloaddition. Finally, a one-pot acylation/(5+2) cycloaddition/nucleophilic lactam opening and other examples of tosyl lactam opening of a modified cycloadduct were demonstrated.
Collapse
Affiliation(s)
- Susanna N Angles
- Department of Chemistry, Illinois State University, Campus Box 4160, Normal, Illinois 61790-4160, United States
| | - Wentao Guo
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Kwabena Darko
- Department of Chemistry, Illinois State University, Campus Box 4160, Normal, Illinois 61790-4160, United States
| | - Marymoud Erzuah
- Department of Chemistry, Illinois State University, Campus Box 4160, Normal, Illinois 61790-4160, United States
| | - Kenneth G Pauley
- Department of Chemistry, Illinois State University, Campus Box 4160, Normal, Illinois 61790-4160, United States
| | - Ifeanyichukwu E Promise
- Department of Chemistry, Illinois State University, Campus Box 4160, Normal, Illinois 61790-4160, United States
| | - John R Goodell
- Department of Chemistry, Illinois State University, Campus Box 4160, Normal, Illinois 61790-4160, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - T Andrew Mitchell
- Department of Chemistry, Illinois State University, Campus Box 4160, Normal, Illinois 61790-4160, United States
| |
Collapse
|
12
|
Tiekink EH, Vermeeren P, Hamlin TA. Not antiaromaticity gain, but increased asynchronicity enhances the Diels-Alder reactivity of tropone. Chem Commun (Camb) 2023; 59:3703-3706. [PMID: 36880301 DOI: 10.1039/d3cc00512g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Tropone is an unreactive diene in normal electron demand Diels-Alder reactions, but it can be activated via carbonyl umpolung by using hydrazone ion analogs. Recently, the higher reactivity of hydrazone ion analogs was ascribed to a raised HOMO energy induced by antiaromaticity (L. J. Karas, A. T. Campbell, I. V. Alabugin and J. I. Wu, Org. Lett., 2020, 22, 7083). We show that this is incorrect, and that the activation barrier is lowered by increased asynchronicity.
Collapse
Affiliation(s)
- Eveline H Tiekink
- Department of Theoretical Chemistry, Amsterdam Institute of Molecfular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands.
| | - Pascal Vermeeren
- Department of Theoretical Chemistry, Amsterdam Institute of Molecfular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands.
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecfular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands.
| |
Collapse
|
13
|
Kee CW. Molecular Understanding and Practical In Silico Catalyst Design in Computational Organocatalysis and Phase Transfer Catalysis-Challenges and Opportunities. Molecules 2023; 28:1715. [PMID: 36838703 PMCID: PMC9966076 DOI: 10.3390/molecules28041715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/25/2023] Open
Abstract
Through the lens of organocatalysis and phase transfer catalysis, we will examine the key components to calculate or predict catalysis-performance metrics, such as turnover frequency and measurement of stereoselectivity, via computational chemistry. The state-of-the-art tools available to calculate potential energy and, consequently, free energy, together with their caveats, will be discussed via examples from the literature. Through various examples from organocatalysis and phase transfer catalysis, we will highlight the challenges related to the mechanism, transition state theory, and solvation involved in translating calculated barriers to the turnover frequency or a metric of stereoselectivity. Examples in the literature that validated their theoretical models will be showcased. Lastly, the relevance and opportunity afforded by machine learning will be discussed.
Collapse
Affiliation(s)
- Choon Wee Kee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| |
Collapse
|
14
|
Stuyver T, Jorner K, Coley CW. Reaction profiles for quantum chemistry-computed [3 + 2] cycloaddition reactions. Sci Data 2023; 10:66. [PMID: 36725850 PMCID: PMC9892576 DOI: 10.1038/s41597-023-01977-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Bio-orthogonal click chemistry based on [3 + 2] dipolar cycloadditions has had a profound impact on the field of biochemistry and significant effort has been devoted to identify promising new candidate reactions for this purpose. To gauge whether a prospective reaction could be a suitable bio-orthogonal click reaction, information about both on- and off-target activation and reaction energies is highly valuable. Here, we use an automated workflow, based on the autodE program, to compute over 5000 reaction profiles for [3 + 2] cycloadditions involving both synthetic dipolarophiles and a set of biologically-inspired structural motifs. Based on a succinct benchmarking study, the B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP level of theory was selected for the DFT calculations, and standard conditions and an (aqueous) SMD model were imposed to mimic physiological conditions. We believe that this data, as well as the presented workflow for high-throughput reaction profile computation, will be useful to screen for new bio-orthogonal reactions, as well as for the development of novel machine learning models for the prediction of chemical reactivity more broadly.
Collapse
Affiliation(s)
- Thijs Stuyver
- grid.116068.80000 0001 2341 2786Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 USA
| | - Kjell Jorner
- grid.17063.330000 0001 2157 2938Department of Computer Science, University of Toronto, 40 St George St, Toronto, Ontario M5S 2E4 Canada ,grid.17063.330000 0001 2157 2938Department of Chemistry, Chemical Physics Theory Group, 80 St. George St., University of Toronto, Ontario, M5S 3H6 Canada ,grid.5371.00000 0001 0775 6028Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-41258 Gothenburg, Sweden
| | - Connor W. Coley
- grid.116068.80000 0001 2341 2786Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 USA ,grid.116068.80000 0001 2341 2786Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 USA
| |
Collapse
|
15
|
Yu S, Tiekink EH, Vermeeren P, Bickelhaupt FM, Hamlin TA. How Bases Catalyze Diels-Alder Reactions. Chemistry 2023; 29:e202203121. [PMID: 36330879 PMCID: PMC10108159 DOI: 10.1002/chem.202203121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
We have quantum chemically studied the base-catalyzed Diels-Alder (DA) reaction between 3-hydroxy-2-pyrone and N-methylmaleimide using dispersion-corrected density functional theory. The uncatalyzed reaction is slow and is preceded by the extrusion of CO2 via a retro-DA reaction. Base catalysis, for example, by triethylamine, lowers the reaction barrier up to 10 kcal mol-1 , causing the reaction to proceed smoothly at low temperature, which quenches the expulsion of CO2 , yielding efficient access to polyoxygenated natural compounds. Our activation strain analyses reveal that the base accelerates the DA reaction via two distinct electronic mechanisms: i) by the HOMO-raising effect, which enhances the normal electron demand orbital interaction; and ii) by donating charge into 3-hydroxy-2-pyrone which accumulates in its reactive region and promotes strongly stabilizing secondary electrostatic interactions with N-methylmaleimide.
Collapse
Affiliation(s)
- Song Yu
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam(TheNetherlands
| | - Eveline H. Tiekink
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam(TheNetherlands
| | - Pascal Vermeeren
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam(TheNetherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam(TheNetherlands
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegen (TheNetherlands
- Department of Chemical SciencesUniversity of JohannesburgAuckland ParkJohannesburg2006South Africa
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam(TheNetherlands
| |
Collapse
|
16
|
Puzzarini C, Stanton JF. Connections between the accuracy of rotational constants and equilibrium molecular structures. Phys Chem Chem Phys 2023; 25:1421-1429. [PMID: 36562443 DOI: 10.1039/d2cp04706c] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rotational spectroscopy is the technique of choice for investigating molecular structures in the gas phase. Indeed, rotational constants are strongly connected to the geometry of the molecular system under consideration. Therefore, they are powerful tools for assessing the accuracy that quantum chemical approaches can reach in structural determinations. In this review article, it is shown how it is possible to measure the accuracy of a computed equilibrium geometry based on the comparison of rotational constants. But, it is also addressed what accuracy is required by computations for providing molecular structures and thus rotational constants that are useful to experiment. Quantum chemical methodologies for obtaining the "0.1% accuracy" for rotational constants are reviewed for systems ranging in size from small molecules to small polycyclic aromatic hydrocarbons. This accuracy for systems containing two dozen or so atoms opens the way towards future applications such as the accurate characterization of non-covalent interactions, which play a key role in several biological and technological processes.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, via F. Selmi 2, 40126, Bologna, Italy.
| | - John F Stanton
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
17
|
Hanaway D, Kennedy CR. Automated Variable Electric-Field DFT Application for Evaluation of Optimally Oriented Electric Fields on Chemical Reactivity. J Org Chem 2023; 88:106-115. [PMID: 36507909 PMCID: PMC9830642 DOI: 10.1021/acs.joc.2c01893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent theoretical work and experiments at molecular junctions have provided a strong conceptualization for the effects of oriented electric fields (OEFs) on organic reactions. Depending on the axis of application, OEFs can increase (or decrease) the reaction rate or distinguish between isomeric pathways. Despite the conceptual elegance of OEFs, which may be applied externally or induced locally, as tools for catalyzing organic reactions, implementation in synthetically relevant systems has been hampered by inefficiencies in evaluating reaction sensitivity to field effects. Herein, we describe the development of the Automated Variable Electric-Field DFT Application (A.V.E.D.A.) for streamlined evaluation of a reaction's susceptibility to OEFs. This open-source software was designed to be accessible for nonexpert users of computational and programming tools. Following initiation by a single command (and with no subsequent intervention) the Linux workflow manages a series of density functional theory calculations and mathematical manipulations to optimize local-minimum and transition-state structures in oriented electric fields of increasing magnitude. The resulting molecular and reaction dipole moments, field-perturbed geometries, and net effective activation energies are compiled for user interpretation. Ten representative pericyclic reactions that showcase the development and evaluation of A.V.E.D.A. are described.
Collapse
|
18
|
Hashimoto Y, Tantillo DJ. Mechanism and the Origins of Periselectivity in Cycloaddition Reactions of Benzyne with Dienes. J Org Chem 2022; 87:12954-12962. [PMID: 36121919 DOI: 10.1021/acs.joc.2c01509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Density functional theory calculations have been used to explore the reaction mechanism of (4 + 2) and (2 + 2) cycloadditions of benzyne with classical dienes. The results indicate the following: (1) (4 + 2) products arise via concerted pathways, (2) (2 + 2) products arise via stepwise pathways with diradical intermediates, and (3) these diradical intermediates are formed via isomerization of carbene intermediates. The origins of periselectivity in these reactions are analyzed using distortion/interaction analysis for the key steps, and they indicate that the tiny distortion in the very early [4 + 2] transition structure, coupled with an entropic favorability, controls selective (4 + 2) cycloaddition.
Collapse
Affiliation(s)
- Yoshimitsu Hashimoto
- Department of Chemistry, University of California-Davis, Davis, California95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California95616, United States
| |
Collapse
|