1
|
Richer M, Sánchez-Díaz G, Martínez-González M, Chuiko V, Kim TD, Tehrani A, Wang S, Gaikwad PB, de Moura CEV, Masschelein C, Miranda-Quintana RA, Gerolin A, Heidar-Zadeh F, Ayers PW. PyCI: A Python-scriptable library for arbitrary determinant CI. J Chem Phys 2024; 161:132502. [PMID: 39365017 DOI: 10.1063/5.0219010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/21/2024] [Indexed: 10/05/2024] Open
Abstract
PyCI is a free and open-source Python library for setting up and running arbitrary determinant-driven configuration interaction (CI) computations, as well as their generalizations to cases where the coefficients of the determinant are nonlinear functions of optimizable parameters. PyCI also includes functionality for computing the residual correlation energy, along with the ability to compute spin-polarized one- and two-electron (transition) reduced density matrices. PyCI was originally intended to replace the ab initio quantum chemistry functionality in the HORTON library but emerged as a standalone research tool, primarily intended to aid in method development, while maintaining high performance so that it is suitable for practical calculations. To this end, PyCI is written in Python, adopting principles of modern software development, including comprehensive documentation, extensive testing, continuous integration/delivery protocols, and package management. Computationally intensive steps, notably operations related to generating Slater determinants and computing their expectation values, are delegated to low-level C++ code. This article marks the official release of the PyCI library, showcasing its functionality and scope.
Collapse
Affiliation(s)
- Michelle Richer
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Gabriela Sánchez-Díaz
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Marco Martínez-González
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Valerii Chuiko
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Taewon David Kim
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, USA
| | - Alireza Tehrani
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Shuoyang Wang
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Pratiksha B Gaikwad
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, USA
| | - Carlos E V de Moura
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, USA
| | - Cassandra Masschelein
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | | | - Augusto Gerolin
- Department of Mathematics and Statistics, and Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, Ontario K1N 6N5, Canada
- Nexus for Quantum Technologies, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Farnaz Heidar-Zadeh
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
2
|
Chuiko V, Richards ADS, Sánchez-Díaz G, Martínez-González M, Sanchez W, B Da Rosa G, Richer M, Zhao Y, Adams W, Johnson PA, Heidar-Zadeh F, Ayers PW. ModelHamiltonian: A Python-scriptable library for generating 0-, 1-, and 2-electron integrals. J Chem Phys 2024; 161:132503. [PMID: 39373207 DOI: 10.1063/5.0219015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 10/08/2024] Open
Abstract
ModelHamiltonian is a free, open source, and cross-platform Python library designed to express model Hamiltonians, including spin-based Hamiltonians (Heisenberg and Ising models) and occupation-based Hamiltonians (Pariser-Parr-Pople, Hubbard, and Hückel models) in terms of 1- and 2-electron integrals, so that these systems can be easily treated by traditional quantum chemistry software programs. ModelHamiltonian was originally intended to facilitate the testing of new electronic structure methods using HORTON but emerged as a stand-alone research tool that we recognize has wide utility, even in an educational context. ModelHamiltonian is written in Python and adheres to modern principles of software development, including comprehensive documentation, extensive testing, continuous integration/delivery protocols, and package management. While we anticipate that most users will use ModelHamiltonian as a Python library, we include a graphical user interface so that models can be built without programming, based on connectivity/parameters inferred from, for example, a SMILES string. We also include an interface to ChatGPT so that users can specify a Hamiltonian in plain language (without learning ModelHamiltonian's vocabulary and syntax). This article marks the official release of the ModelHamiltonian library, showcasing its functionality and scope.
Collapse
Affiliation(s)
- Valerii Chuiko
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Addison D S Richards
- Department of Physics and Astronomy, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Gabriela Sánchez-Díaz
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Marco Martínez-González
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Wesley Sanchez
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Giovanni B Da Rosa
- Engineering School Télécom Paris, 19 Pl. Marguerite Perey, 91120 Palaiseau, France
| | - Michelle Richer
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Yilin Zhao
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - William Adams
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Paul A Johnson
- Département de Chimie, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Farnaz Heidar-Zadeh
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
3
|
Gałyńska M, de Moraes MMF, Tecmer P, Boguslawski K. Delving into the catalytic mechanism of molybdenum cofactors: a novel coupled cluster study. Phys Chem Chem Phys 2024; 26:18918-18929. [PMID: 38952220 DOI: 10.1039/d4cp01500b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
In this work, we use modern electronic structure methods to model the catalytic mechanism of different variants of the molybdenum cofactor (Moco). We investigate the dependence of various Moco model systems on structural relaxation and the importance of environmental effects for five critical points along the reaction coordinate with the DMSO and NO3- substrates. Furthermore, we scrutinize the performance of various coupled-cluster approaches for modeling the relative energies along the investigated reaction paths, focusing on several pair coupled cluster doubles (pCCD) flavors and conventional coupled cluster approximations. Moreover, we elucidate the Mo-O bond formation using orbital-based quantum information measures, which highlight the flow of σM-O bond formation and σN/S-O bond breaking. Our study shows that pCCD-based models are a viable alternative to conventional methods and offer us unique insights into the bonding situation along a reaction coordinate. Finally, this work highlights the importance of environmental effects or changes in the core and, consequently, in the model itself to elucidate the change in activity of different Moco variants.
Collapse
Affiliation(s)
- Marta Gałyńska
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland.
| | - Matheus Morato F de Moraes
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland.
| | - Paweł Tecmer
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland.
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
4
|
Chakraborty R, de Moraes MMF, Boguslawski K, Nowak A, Świerczyński J, Tecmer P. Toward Reliable Dipole Moments without Single Excitations: The Role of Orbital Rotations and Dynamical Correlation. J Chem Theory Comput 2024; 20:4689-4702. [PMID: 38809012 PMCID: PMC11171297 DOI: 10.1021/acs.jctc.4c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
The dipole moment is a crucial molecular property linked to a molecular system's bond polarity and overall electronic structure. To that end, the electronic dipole moment, which results from the electron density of a system, is often used to assess the accuracy and reliability of new electronic structure methods. This work analyses electronic dipole moments computed with the pair coupled cluster doubles (pCCD) ansätze and its linearized coupled cluster (pCCD-LCC) corrections using the canonical Hartree-Fock and pCCD-optimized (localized) orbital bases. The accuracy of pCCD-based dipole moments is assessed against experimental and CCSD(T) reference values using relaxed and unrelaxed density matrices and different basis set sizes. Our test set comprises molecules of various bonding patterns and electronic structures, exposing pCCD-based methods to a wide range of electron correlation effects. Additionally, we investigate the performance of pCCD-in-DFT dipole moments of some model complexes. Finally, our work indicates the importance of orbital relaxation in the pCCD model and shows the limitations of the linearized couple cluster corrections in predicting electronic dipole moments of multiple-bonded systems. Most importantly, pCCD with a linearized CCD correction can reproduce the dipole moment surfaces in singly bonded molecules, which are comparable to the multireference ones.
Collapse
Affiliation(s)
- Rahul Chakraborty
- Institute
of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Matheus Morato F. de Moraes
- Institute
of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Katharina Boguslawski
- Institute
of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Artur Nowak
- Institute
of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Julian Świerczyński
- Institute
of Engineering and Technology, Faculty of Physics, Astronomy, and
Informatics, Nicolaus Copernicus University
in Toruń, Grudzia̧dzka
5, 87-100 Toruń, Poland
| | - Paweł Tecmer
- Institute
of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| |
Collapse
|
5
|
Gałyńska M, Boguslawski K. Benchmarking Ionization Potentials from pCCD Tailored Coupled Cluster Models. J Chem Theory Comput 2024; 20:4182-4195. [PMID: 38752491 PMCID: PMC11137826 DOI: 10.1021/acs.jctc.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
The ionization potential (IP) is an important parameter providing essential insights into the reactivity of chemical systems. IPs are also crucial for designing, optimizing, and understanding the functionality of modern technological devices. We recently showed that limiting the CC ansatz to the seniority-zero sector proves insufficient in predicting reliable and accurate ionization potentials within an IP equation-of-motion coupled-cluster formalism. Specifically, the absence of dynamical correlation in the seniority-zero pair coupled cluster doubles (pCCD) model led to unacceptably significant errors of approximately 1.5 eV. In this work, we aim to explore the impact of dynamical correlation and the choice of the molecular orbital basis (canonical vs localized) in CC-type methods targeting 230 ionized states in 70 molecules, comprising small organic molecules, medium-sized organic acceptors, and nucleobases. We focus on pCCD-based approaches as well as the conventional IP-EOM-CCD and IP-EOM-CCSD. Their performance is compared to the CCSD(T) or CCSDT equivalent and experimental reference data. Our statistical analysis reveals that all investigated frozen-pair coupled cluster methods exhibit similar performance, with differences in errors typically within chemical accuracy (1 kcal/mol or 0.05 eV). Notably, the effect of the molecular orbital basis, such as canonical Hartree-Fock or natural pCCD-optimized orbitals, on the IPs is marginal if dynamical correlation is accounted for. Our study suggests that triple excitations are crucial in achieving chemical accuracy in IPs when modeling electron detachment processes with pCCD-based methods.
Collapse
Affiliation(s)
- Marta Gałyńska
- Institute of Physics, Faculty of Physics,
Astronomy, and Informatics, Nicolaus Copernicus
University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics,
Astronomy, and Informatics, Nicolaus Copernicus
University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| |
Collapse
|
6
|
Gasevic T, Bursch M, Ma Q, Grimme S, Werner HJ, Hansen A. The p-block challenge: assessing quantum chemistry methods for inorganic heterocycle dimerizations. Phys Chem Chem Phys 2024; 26:13884-13908. [PMID: 38661329 DOI: 10.1039/d3cp06217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The elements of the p-block of the periodic table are of high interest in various chemical and technical applications like frustrated Lewis-pairs (FLP) or opto-electronics. However, high-quality benchmark data to assess approximate density functional theory (DFT) for their theoretical description are sparse. In this work, we present a benchmark set of 604 dimerization energies of 302 "inorganic benzenes" composed of all non-carbon p-block elements of main groups III to VI up to polonium. This so-called IHD302 test set comprises two classes of structures formed by covalent bonding and by weaker donor-acceptor (WDA) interactions, respectively. Generating reliable reference data with ab initio methods is challenging due to large electron correlation contributions, core-valence correlation effects, and especially the slow basis set convergence. To compute reference values for these dimerization reactions, after thorough testing, we applied a computational protocol using state-of-the-art explicitly correlated local coupled cluster theory termed PNO-LCCSD(T)-F12/cc-VTZ-PP-F12(corr.). It includes a basis set correction at the PNO-LMP2-F12/aug-cc-pwCVTZ level. Based on these reference data, we assess 26 DFT methods in combination with three different dispersion corrections and the def2-QZVPP basis set, five composite DFT approaches, and five semi-empirical quantum mechanical methods. For the covalent dimerizations, the r2SCAN-D4 meta-GGA, the r2SCAN0-D4 and ωB97M-V hybrids, and the revDSD-PBEP86-D4 double-hybrid functional are found to be the best-performing methods among the evaluated functionals of the respective class. However, since def2 basis sets for the 4th period are not associated to relativistic pseudo-potentials, we obtained significant errors in the covalent dimerization energies (up to 6 kcal mol-1) for molecules containing p-block elements of the 4th period. Significant improvements were achieved for systems containing 4th row elements by using ECP10MDF pseudopotentials along with re-contracted aug-cc-pVQZ-PP-KS basis sets introduced in this work with the contraction coefficients taken from atomic DFT (PBE0) calculations. Overall, the IHD302 set represents a challenge to contemporary quantum chemical methods. This is due to a large number of spatially close p-element bonds which are underrepresented in other benchmark sets, and the partial covalent bonding character for the WDA interactions. The IHD302 set may be helpful to develop more robust and transferable approximate quantum chemical methods in the future.
Collapse
Affiliation(s)
- Thomas Gasevic
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
- FACCTs GmbH, 50677, Koeln, Germany
| | - Qianli Ma
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| |
Collapse
|
7
|
Miranda-Quintana RA, Kim TD, Lokhande RA, Richer M, Sánchez-Díaz G, Gaikwad PB, Ayers PW. Flexible Ansatz for N-Body Perturbation Theory. J Phys Chem A 2024; 128:3458-3467. [PMID: 38651558 DOI: 10.1021/acs.jpca.4c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We propose a new perturbation theory framework that can be used to help with the projective solution of the Schrödinger equation for arbitrary wave functions. This Flexible Ansatz for N-body Perturbation Theory (FANPT) is based on our previously proposed Flexible Ansatz for the N-body Configuration Interaction (FANCI). We derive recursive FANPT expressions, including arbitrary orders in the perturbation hierarchy. We show that the FANPT equations are well-behaved across a wide range of conditions, including static correlation-dominated configurations and highly nonlinear wave functions.
Collapse
Affiliation(s)
- Ramón Alain Miranda-Quintana
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, United States
| | - Taewon D Kim
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, United States
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Rugwed A Lokhande
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, United States
| | - M Richer
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Gabriela Sánchez-Díaz
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Pratiksha B Gaikwad
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, United States
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
8
|
Gaikwad PB, Kim TD, Richer M, Lokhande RA, Sánchez-Díaz G, Limacher PA, Ayers PW, Miranda-Quintana RA. Coupled cluster-inspired geminal wavefunctions. J Chem Phys 2024; 160:144108. [PMID: 38597308 DOI: 10.1063/5.0202035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024] Open
Abstract
Electron pairs have an illustrious history in chemistry, from powerful concepts to understanding structural stability and reactive changes to the promise of serving as building blocks of quantitative descriptions of the electronic structure of complex molecules and materials. However, traditionally, two-electron wavefunctions (geminals) have not enjoyed the popularity and widespread use of the more standard single-particle methods. This has changed recently, with a renewed interest in the development of geminal wavefunctions as an alternative to describing strongly correlated phenomena. Hence, there is a need to find geminal methods that are accurate, computationally tractable, and do not demand significant input from the user (particularly via cumbersome and often ill-behaved orbital optimization steps). Here, we propose new families of geminal wavefunctions inspired by the pair coupled cluster doubles ansatz. We present a new hierarchy of two-electron wavefunctions that extends the one-reference orbital idea to other geminals. Moreover, we show how to incorporate single-like excitations in this framework without leaving the quasiparticle picture. We explore the role of imposing seniority restrictions on these wavefunctions and benchmark these new methods on model strongly correlated systems.
Collapse
Affiliation(s)
- Pratiksha B Gaikwad
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, USA
| | - Taewon D Kim
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, USA
| | - M Richer
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Rugwed A Lokhande
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, USA
| | - Gabriela Sánchez-Díaz
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Peter A Limacher
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | | |
Collapse
|
9
|
Paul née Matveeva R, Folkestad SD, Sannes BS, Høyvik IM. Particle-Breaking Unrestricted Hartree-Fock Theory for Open Molecular Systems. J Phys Chem A 2024; 128:1533-1542. [PMID: 38351699 PMCID: PMC10910564 DOI: 10.1021/acs.jpca.3c07231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
We recently introduced the particle-breaking restricted Hartree-Fock (PBRHF) model, a mean-field approach to address the fractional charging of molecules when they interact with an electronic environment. In this paper, we present an extension of the model referred to as particle-breaking unrestricted Hartree-Fock (PBUHF). The unrestricted formulation contains odd-electron states necessary for a realistic description of fractional charging. Within the PBUHF parametrization, we use two-body operators as they yield convenient operator transformations. However, two-body operators can change only the particle number by two. Therefore, we include noninteracting zero-energy bath orbitals to generate a linear combination of even and odd electron states. Depending on whether the occupied or virtual orbitals of a molecule interact with the environment, the average number of electrons is either decreased or increased. Without interaction, PBUHF reduces to the unrestricted Hartree-Fock wave function.
Collapse
Affiliation(s)
- Regina Paul née Matveeva
- Department of Chemistry, The
Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Sarai Dery Folkestad
- Department of Chemistry, The
Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Bendik Støa Sannes
- Department of Chemistry, The
Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Ida-Marie Høyvik
- Department of Chemistry, The
Norwegian University of Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
10
|
Dutta R, Gao F, Khamoshi A, Henderson TM, Scuseria GE. Correlated pair ansatz with a binary tree structure. J Chem Phys 2024; 160:084113. [PMID: 38421064 DOI: 10.1063/5.0185375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
We develop an efficient algorithm to implement the recently introduced binary tree state (BTS) ansatz on a classical computer. BTS allows a simple approximation to permanents arising from the computationally intractable antisymmetric product of interacting geminals and respects size-consistency. We show how to compute BTS overlap and reduced density matrices efficiently. We also explore two routes for developing correlated BTS approaches: Jastrow coupled cluster on BTS and linear combinations of BT states. The resulting methods show great promise in benchmark applications to the reduced Bardeen-Cooper-Schrieffer Hamiltonian and the one-dimensional XXZ Heisenberg Hamiltonian.
Collapse
Affiliation(s)
- Rishab Dutta
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - Fei Gao
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| | - Armin Khamoshi
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| | - Thomas M Henderson
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| | - Gustavo E Scuseria
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
11
|
Kriebel MH, Tecmer P, Gałyńska M, Leszczyk A, Boguslawski K. Accelerating Pythonic Coupled-Cluster Implementations: A Comparison Between CPUs and GPUs. J Chem Theory Comput 2024; 20:1130-1142. [PMID: 38306601 PMCID: PMC10867805 DOI: 10.1021/acs.jctc.3c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/04/2024]
Abstract
In this work, we benchmark several Python routines for time and memory requirements to identify the optimal choice of the tensor contraction operations available. We scrutinize how to accelerate the bottleneck tensor operations of Pythonic coupled-cluster implementations in the Cholesky linear algebra domain, utilizing a NVIDIA Tesla V100S PCIe 32GB (rev 1a) graphics processing unit (GPU). The NVIDIA compute unified device architecture API interacts with CuPy, an open-source library for Python, designed as a NumPy drop-in replacement for GPUs. Due to the limitations of video memory, the GPU calculations must be performed batch-wise. Timing results of some contractions containing large tensors are presented. The CuPy implementation leads to a factor of 10-16 speed-up of the bottleneck tensor contractions compared to computations on 36 central processing unit (CPU) cores. Finally, we compare example CCSD and pCCD-LCCSD calculations performed solely on CPUs to their CPU-GPU hybrid implementation, which leads to a speed-up of a factor of 3-4 compared to the CPU-only variant.
Collapse
Affiliation(s)
- Maximilian H. Kriebel
- Institute of Physics, Faculty of Physics,
Astronomy, and Informatics, Nicolaus Copernicus
University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Paweł Tecmer
- Institute of Physics, Faculty of Physics,
Astronomy, and Informatics, Nicolaus Copernicus
University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Marta Gałyńska
- Institute of Physics, Faculty of Physics,
Astronomy, and Informatics, Nicolaus Copernicus
University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Aleksandra Leszczyk
- Institute of Physics, Faculty of Physics,
Astronomy, and Informatics, Nicolaus Copernicus
University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics,
Astronomy, and Informatics, Nicolaus Copernicus
University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| |
Collapse
|
12
|
Rutskoy B, Ozerov G, Bezrukov D. The Role of Bond Functions in Describing Intermolecular Electron Correlation for Van der Waals Dimers: A Study of (CH 4) 2 and Ne 2. Int J Mol Sci 2024; 25:1472. [PMID: 38338750 PMCID: PMC10855067 DOI: 10.3390/ijms25031472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
We present a study of the intermolecular interactions in van der Waals complexes of methane and neon dimers within the framework of the CCSD method. This approach was implemented and applied to calculate and examine the behavior of the contracted two-particle reduced density matrix (2-RDM). It was demonstrated that the region near the minimum of the two-particle density matrix correlation part, corresponding to the primary bulk of the Coulomb hole contribution, exerts a significant influence on the dispersion interaction energetics of the studied systems. As a result, the bond functions approach was applied to improve the convergence performance for the intermolecular correlation energy results with respect to the size of the atomic basis. For this, substantial acceleration was achieved by introducing an auxiliary basis of bond functions centered on the minima of the 2-RDM. For both methane and neon dimers, this general conclusion was confirmed with a series of CCSD calculations for the 2-RDM and the correlation energies.
Collapse
Affiliation(s)
- Bogdan Rutskoy
- National Research Centre “Kurchatov Institute”, Moscow 123182, Russia;
- Institute of Nuclear Physics and Technology, National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute), Moscow 115409, Russia
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Georgiy Ozerov
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Dmitry Bezrukov
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow 119991, Russia;
| |
Collapse
|
13
|
Kossoski F, Loos PF. Seniority and Hierarchy Configuration Interaction for Radicals and Excited States. J Chem Theory Comput 2023. [PMID: 37965728 DOI: 10.1021/acs.jctc.3c00946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Hierarchy configuration interaction (hCI) has recently been introduced as an alternative configuration interaction (CI) route combining excitation degree and seniority number and has been shown to efficiently recover both dynamic and static correlations for closed-shell molecular systems [ J. Phys. Chem. Lett. 2022, 13, 4342]. Here we generalize hCI for an arbitrary reference determinant, allowing calculations for radicals and excited states in a state-specific way. We gauge this route against excitation-based CI (eCI) and seniority-based CI (sCI) by evaluating how different ground-state properties of radicals converge to the full CI limit. We find that hCI outperforms or matches eCI, whereas sCI is far less accurate, in line with previous observations for closed-shell molecules. Employing second-order Epstein-Nesbet (EN2) perturbation theory as a correction significantly accelerates the convergence of hCI and eCI. We further explore various hCI and sCI models to calculate the excitation energies of closed- and open-shell systems. Our results underline that the choice of both the reference determinant and the set of orbitals drives the fine balance between correlation of ground and excited states. State-specific hCI2 and higher-order models perform similarly to their eCI counterparts, whereas lower orders of hCI deliver poor results unless supplemented by the EN2 correction, which substantially improves their accuracy. In turn, sCI1 produces decent excitation energies for radicals, encouraging the development of related seniority-based coupled-cluster methods.
Collapse
Affiliation(s)
- Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| |
Collapse
|
14
|
Tecmer P, Gałyńska M, Szczuczko L, Boguslawski K. Geminal-Based Strategies for Modeling Large Building Blocks of Organic Electronic Materials. J Phys Chem Lett 2023; 14:9909-9917. [PMID: 37903084 PMCID: PMC10641881 DOI: 10.1021/acs.jpclett.3c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023]
Abstract
We elaborate on unconventional electronic structure methods based on geminals and their potential to advance the rapidly developing field of organic photovoltaics (OPVs). Specifically, we focus on the computational advantages of geminal-based methods over standard approaches and identify the critical aspects of OPV development. Examples are reliable and efficient computations of orbital energies, electronic spectra, and van der Waals interactions. Geminal-based models can also be combined with quantum embedding techniques and a quantum information analysis of orbital interactions to gain a fundamental understanding of the electronic structures and properties of realistic OPV building blocks. Furthermore, other organic components present in, for instance, dye-sensitized solar cells (DSSCs) represent another promising scope of application. Finally, we provide numerical examples predicting the properties of a small building block of OPV components and two carbazole-based dyes proposed as possible DSSC sensitizers.
Collapse
Affiliation(s)
- Paweł Tecmer
- Institute of Physics, Faculty of Physics,
Astronomy, and Informatics, Nicolaus Copernicus
University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Marta Gałyńska
- Institute of Physics, Faculty of Physics,
Astronomy, and Informatics, Nicolaus Copernicus
University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Lena Szczuczko
- Institute of Physics, Faculty of Physics,
Astronomy, and Informatics, Nicolaus Copernicus
University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics,
Astronomy, and Informatics, Nicolaus Copernicus
University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| |
Collapse
|
15
|
Chakraborty R, Boguslawski K, Tecmer P. Static embedding with pair coupled cluster doubles based methods. Phys Chem Chem Phys 2023; 25:25377-25388. [PMID: 37705409 DOI: 10.1039/d3cp02502k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Quantum embedding methods have recently been significantly developed to model large molecular structures. This work proposes a novel wave function theory in a density functional theory (WTF-in-DFT) embedding scheme based on pair-coupled cluster doubles (pCCD)-type methods. While pCCD can reliably describe strongly-correlated systems with mean-field-like computational cost, the large extent of the dynamic correlation can be accounted for by (linearized) coupled-cluster corrections on top of the pCCD wave function. Here we focus on the linearized coupled-cluster singles and doubles (LCCSD) ansatz for electronic ground states and its extension to excited states within the equation of motion (EOM) formalism. We test our EOM-pCCD-LCCSD-in-DFT approach for the vertical excitation energies of the hydrogen-bonded water-ammonia complex, micro-solvated thymine, and uranyl tetrahalides (UO2X42-, X = F, Cl, Br). Furthermore, we assess the quality of the embedding potential using an orbital entanglement and correlation analysis. The approximate embedding models successfully capture changes in the excitation energies going from bare fragments to supramolecular structures and represent a promising computational method for excited states in large molecular systems.
Collapse
Affiliation(s)
- Rahul Chakraborty
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| | - Paweł Tecmer
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
16
|
Jahani S, Boguslawski K, Tecmer P. The relationship between structure and excited-state properties in polyanilines from geminal-based methods. RSC Adv 2023; 13:27898-27911. [PMID: 37736567 PMCID: PMC10509596 DOI: 10.1039/d3ra05621j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
We employ state-of-the-art quantum chemistry methods to study the structure-to-property relationship in polyanilines (PANIs) of different lengths and oxidation states. Specifically, we focus on leucoemeraldine, emeraldine, and pernigraniline in their tetramer and octamer forms. We scrutinize their structural properties, HOMO and LUMO energies, HOMO-LUMO gaps, and vibrational and electronic spectroscopy using various Density Functional Approximations (DFAs). Furthermore, the accuracy of DFAs is assessed by comparing them to experimental and wavefunction-based reference data. We perform large-scale orbital-optimized pair-Coupled Cluster Doubles (oo-pCCD) calculations for ground and electronically excited states and conventional Configuration Interaction Singles (CIS) calculations for electronically excited states in all investigated systems. The EOM-pCCD+S approach with pCCD-optimized orbitals allows us to unambiguously identify charge transfer and local transitions across the investigated PANI systems-an analysis not possible within a delocalized canonical molecular orbital basis obtained, for instance, by DFAs. We show that the low-lying part of the emeraldine and pernigraniline spectrum is dominated by charge transfer excitations and that polymer elongation changes the character of the leading transitions. Furthermore, we augment our study with a quantum informational analysis of orbital correlations in various forms of PANIs.
Collapse
Affiliation(s)
- Seyedehdelaram Jahani
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń Grudziadzka 5 87-100 Toruń Poland
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń Grudziadzka 5 87-100 Toruń Poland
| | - Paweł Tecmer
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń Grudziadzka 5 87-100 Toruń Poland
| |
Collapse
|
17
|
Mamache S, Gałyńska M, Boguslawski K. Benchmarking ionization potentials using the simple pCCD model. Phys Chem Chem Phys 2023. [PMID: 37378457 DOI: 10.1039/d3cp01963b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The electron-detachment energy is measured by the ionization potential (IP). As a result, it is a fundamental, observable and important molecular electronic signature in photoelectron spectroscopy. A precise theoretical prediction of electron-detachment energies or ionization potentials is essential for organic optoelectronic systems like transistors, solar cells, or light-emitting diodes. In this work, we benchmark the performance of the recently presented IP variant of the equation-of-motion pair coupled cluster doubles (IP-EOM-pCCD) model to determine IPs. Specifically, the predicted ionization energies are compared to experimental results and higher-order coupled cluster theories based on statistically assessing 201 electron-detached states of 41 organic molecules for three different molecular orbital basis sets and two sets of particle-hole operators. While IP-EOM-pCCD features a reasonable spread and skewness of ionization energies, its mean error and standard deviation differ by up to 1.5 eV from reference data. Our study, thus, highlights the importance of dynamical correlation to reliably predict IPs from a pCCD reference function in small organic molecules.
Collapse
Affiliation(s)
- Saddem Mamache
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| | - Marta Gałyńska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
18
|
Khamoshi A, Dutta R, Scuseria GE. State Preparation of Antisymmetrized Geminal Power on a Quantum Computer without Number Projection. J Phys Chem A 2023; 127:4005-4014. [PMID: 37129503 DOI: 10.1021/acs.jpca.3c00525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The antisymmetrized geminal power (AGP) is equivalent to the number projected Bardeen-Cooper-Schrieffer (PBCS) wave function. It is also an elementary symmetric polynomial (ESP) state. We generalize previous research on deterministically implementing the Dicke state to a state preparation algorithm for an ESP state, or equivalently AGP, on a quantum computer. Our method is deterministic and has polynomial cost, and it does not rely on number symmetry breaking and restoration. We also show that our circuit is equivalent to a disentangled unitary paired coupled cluster operator and a layer of unitary Jastrow operator acting on a single Slater determinant. The method presented herein highlights the ability of disentangled unitary coupled cluster to capture nontrivial entanglement properties that are hardly accessible with traditional Hartree-Fock based electronic structure methods.
Collapse
Affiliation(s)
- Armin Khamoshi
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Rishab Dutta
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Gustavo E Scuseria
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
19
|
Nowak A, Boguslawski K. A configuration interaction correction on top of pair coupled cluster doubles. Phys Chem Chem Phys 2023; 25:7289-7301. [PMID: 36810525 DOI: 10.1039/d2cp05171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Numerous numerical studies have shown that geminal-based methods are a promising direction to model strongly correlated systems with low computational costs. Several strategies have been introduced to capture the missing dynamical correlation effects, which typically exploit a posteriori corrections to account for correlation effects associated with broken-pair states or inter-geminal correlations. In this article, we scrutinize the accuracy of the pair coupled cluster doubles (pCCD) method extended by configuration interaction (CI) theory. Specifically, we benchmark various CI models, including, at most double excitations against selected CC corrections as well as conventional single-reference CC methods. A simple Davidson correction is also tested. The accuracy of the proposed pCCD-CI approaches is assessed for challenging small model systems such as the N2 and F2 dimers and various di- and triatomic actinide-containing compounds. In general, the proposed CI methods considerably improve spectroscopic constants compared to the conventional CCSD approach, provided a Davidson correction is included in the theoretical model. At the same time, their accuracy lies between those of the linearized frozen pCCD and frozen pCCD variants.
Collapse
Affiliation(s)
- Artur Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
20
|
Rishi V, Ravi M, Perera A, Bartlett RJ. Dark Doubly Excited States with Modified Coupled Cluster Models: A Reliable Compromise between Cost and Accuracy? J Phys Chem A 2023; 127:828-834. [PMID: 36640093 DOI: 10.1021/acs.jpca.2c07697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To treat doubly excited states, the treatment of triple excitations is considered necessary in the framework of equation-of-motion coupled cluster (EOM-CC) methods. We investigate models without explicit triples and seek quantitative measure for the performance of EOM based on CC with singles and doubles (CCSD) or modified CCSD (Distinguishable Cluster Approximation) approaches for states with predominant double excitation character. We also test the efficacy of including triples in perturbative manner through EOM-CCSD(T) and in an iterative way through EOM-CCSDT-3 method. Extended similarity transformed EOM-CCSD(EXT-STEOM-CCSD) method is also tested and provides superior quality results at comparatively low cost. We use the QUEST2 benchmark set of double excitations proposed by Loos et al. [ J. Chem. Theory Comput.2019, 15, 1939] to investigate the performance of methods such as EOM-CCSD, EOM-DCSD, EXT-STEOM-CCSD, ΔCCSD, and ΔDCSD. We also test a tailored CC approach, ΔpairCCD-TCCSD.
Collapse
Affiliation(s)
- Varun Rishi
- Quantum Theory Project, University of Florida, Gainesville, Florida32611, United States
| | - Moneesha Ravi
- Quantum Theory Project, University of Florida, Gainesville, Florida32611, United States
| | - Ajith Perera
- Quantum Theory Project, University of Florida, Gainesville, Florida32611, United States
| | - Rodney J Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida32611, United States
| |
Collapse
|
21
|
Barcza G, Werner MA, Zaránd G, Pershin A, Benedek Z, Legeza Ö, Szilvási T. Toward Large-Scale Restricted Active Space Calculations Inspired by the Schmidt Decomposition. J Phys Chem A 2022; 126:9709-9718. [PMID: 36520596 DOI: 10.1021/acs.jpca.2c05952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We present an alternative, memory-efficient, Schmidt decomposition-based description of the inherently bipartite restricted active space (RAS) scheme, which can be implemented effortlessly within the density matrix renormalization group (DMRG) method via the dynamically extended active space procedure. Benchmark calculations are compared against state-of-the-art results of C2 and Cr2, which are notorious for their multireference character. Our results for ground and excited states together with spectroscopic constants demonstrate that the proposed novel approach, dubbed as DMRG-RAS, which is variational and free of uncontrolled method errors, has the potential to outperfom conventional methods for strongly correlated molecules.
Collapse
Affiliation(s)
- Gergely Barcza
- Wigner Research Centre for Physics, H-1525Budapest, Hungary.,Department of Physics of Complex Systems, ELTE Eötvös Loránd University, H-1117, Budapest, Hungary.,Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama35487, United States
| | - Miklós Antal Werner
- Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111Budapest, Hungary.,MTA-BME Quantum Dynamics and Correlations Research Group, H-1111Budapest, Hungary
| | - Gergely Zaránd
- Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111Budapest, Hungary.,MTA-BME Quantum Dynamics and Correlations Research Group, H-1111Budapest, Hungary
| | - Anton Pershin
- Wigner Research Centre for Physics, H-1525Budapest, Hungary
| | - Zsolt Benedek
- Wigner Research Centre for Physics, H-1525Budapest, Hungary.,Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama35487, United States
| | - Örs Legeza
- Wigner Research Centre for Physics, H-1525Budapest, Hungary.,Fachbereich Physik, Philipps-Universität Marburg, 35032Marburg, Germany.,Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2a, 85748Garching, Germany
| | - Tibor Szilvási
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama35487, United States
| |
Collapse
|