1
|
Kato HS, Muroyama M, Kobayakawa N, Muneyasu R, Tsuda Y, Murase N, Watanabe S, Yamada T, Kanematsu Y, Tachikawa M, Akai-Kasaya M, Okada M, Yoshigoe A. Electron Transfer Capability in Atomic Hydrogen Reactions for Imidazole Groups Bound to the Insulating Alkanethiolate Layer on Au(111). J Phys Chem Lett 2024; 15:10769-10776. [PMID: 39422970 DOI: 10.1021/acs.jpclett.4c02306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The charge transfer capability associated with chemical reactions at metal-organic interfaces was studied via the atomic H addition reaction for an imidazole-terminated alkanethiolate self-assembled monolayer (Im-SAM) film on Au(111) at room temperature, using near-edge X-ray absorption fine structure spectroscopy, infrared reflection absorption spectroscopy, work function measurements, and density functional theory calculations. The imidazolium cation is a stable species in liquids; therefore, it is pertinent to determine whether the hydrogenation reactions of the imidazole groups produce imidazolium cations accompanied by electron transfer to the Au substrate, even in the absence of solvate and/or counterions on the insulating alkanethiolate layer. The experiments made it clear that the imidazolium moieties were formed during the irradiation of Im-SAM with atomic H. Theoretical model calculations also revealed that the total energies and molecular orbital levels satisfied the imidazolium cation formation associated with electron transfer. In a detailed analysis of the work function change depending on H irradiation, we confirmed that some of the imidazolium radicals became cations in Im-SAM.
Collapse
Affiliation(s)
- Hiroyuki S Kato
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Mizuho Muroyama
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Nano Kobayakawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Riku Muneyasu
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yasutaka Tsuda
- Materials Sciences Research Center, Japan Atomic Energy Agency (JAEA), Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Natsumi Murase
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Seiya Watanabe
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takashi Yamada
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yusuke Kanematsu
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Masanori Tachikawa
- Department of Materials System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
| | - Megumi Akai-Kasaya
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Michio Okada
- Institute for Radiation Sciences, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Akitaka Yoshigoe
- Materials Sciences Research Center, Japan Atomic Energy Agency (JAEA), Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
2
|
Seo D, Seong S, Kim H, Oh HS, Lee JH, Kim H, Kim YO, Maeda S, Chikami S, Hayashi T, Noh J. Molecular Self-Assembly and Adsorption Structure of 2,2'-Dipyrimidyl Disulfides on Au(111) Surfaces. Molecules 2024; 29:846. [PMID: 38398598 PMCID: PMC10892263 DOI: 10.3390/molecules29040846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The effects of solution concentration and pH on the formation and surface structure of 2-pyrimidinethiolate (2PymS) self-assembled monolayers (SAMs) on Au(111) via the adsorption of 2,2'-dipyrimidyl disulfide (DPymDS) were examined using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). STM observations revealed that the formation and structural order of 2PymS SAMs were markedly influenced by the solution concentration and pH. 2PymS SAMs formed in a 0.01 mM ethanol solution were mainly composed of a more uniform and ordered phase compared with those formed in 0.001 mM or 1 mM solutions. SAMs formed in a 0.01 mM solution at pH 2 were composed of a fully disordered phase with many irregular and bright aggregates, whereas SAMs formed at pH 7 had small ordered domains and many bright islands. As the solution pH increased from pH 7 to pH 12, the surface morphology of 2PymS SAMs remarkably changed from small ordered domains to large ordered domains, which can be described as a (4√2 × 3)R51° packing structure. XPS measurements clearly showed that the adsorption of DPymDS on Au(111) resulted in the formation of 2PymS (thiolate) SAMs via the cleavage of the disulfide (S-S) bond in DPymDS, and most N atoms in the pyrimidine rings existed in the deprotonated form. The results herein will provide a new insight into the molecular self-assembly behaviors and adsorption structures of DPymDS molecules on Au(111) depending on solution concentration and pH.
Collapse
Affiliation(s)
- Dongjin Seo
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Sicheon Seong
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Haeri Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Hyun Su Oh
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Jun Hyeong Lee
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Hongki Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Yeon O Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Shoichi Maeda
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; (S.M.); (S.C.)
| | - Shunta Chikami
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; (S.M.); (S.C.)
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; (S.M.); (S.C.)
| | - Jaegeun Noh
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; (S.M.); (S.C.)
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
3
|
Xiong J, Tang H, Sun L, Zhu J, Tao S, Luo J, Li J, Li J, Wu H, Yang J. A macrophage cell membrane-coated cascade-targeting photothermal nanosystem for combating intracellular bacterial infections. Acta Biomater 2024; 175:293-306. [PMID: 38159895 DOI: 10.1016/j.actbio.2023.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Current antibacterial interventions encounter formidable challenges when confronting intracellular bacteria, attributable to their clustering within phagocytes, particularly macrophages, evading host immunity and resisting antibiotics. Herein, we have developed an intelligent cell membrane-based nanosystem, denoted as MM@DAu NPs, which seamlessly integrates cascade-targeting capabilities with controllable antibacterial functions for the precise elimination of intracellular bacteria. MM@DAu NPs feature a core comprising D-alanine-functionalized gold nanoparticles (DAu NPs) enveloped by a macrophage cell membrane (MM) coating. Upon administration, MM@DAu NPs harness the intrinsic homologous targeting ability of their macrophage membrane to infiltrate bacteria-infected macrophages. Upon internalization within these host cells, exposed DAu NPs from MM@DAu NPs selectively bind to intracellular bacteria through the bacteria-targeting agent, D-alanine present on DAu NPs. This intricate process establishes a cascade mechanism that efficiently targets intracellular bacteria. Upon exposure to near-infrared irradiation, the accumulated DAu NPs surrounding intracellular bacteria induce local hyperthermia, enabling precise clearance of intracellular bacteria. Further validation in animal models infected with the typical intracellular bacteria, Staphylococcus aureus, substantiates the exceptional cascade-targeting efficacy and photothermal antibacterial potential of MM@DAu NPs in vivo. Therefore, this integrated cell membrane-based cascade-targeting photothermal nanosystem offers a promising approach for conquering persistent intracellular infections without drug resistance risks. STATEMENT OF SIGNIFICANCE: Intracellular bacterial infections lead to treatment failures and relapses because intracellular bacteria could cluster within phagocytes, especially macrophages, evading the host immune system and resisting antibiotics. Herein, we have developed an intelligent cell membrane-based nanosystem MM@DAu NPs, which is designed to precisely eliminate intracellular bacteria through a controllable cascade-targeting photothermal antibacterial approach. MM@DAu NPs combine D-alanine-functionalized gold nanoparticles with a macrophage cell membrane coating. Upon administration, MM@DAu NPs harness the homologous targeting ability of macrophage membrane to infiltrate bacteria-infected macrophages. Upon internalization, exposed DAu NPs from MM@DAu NPs selectively bind to intracellular bacteria through the bacteria-targeting agent, enabling precise clearance of intracellular bacteria through local hyperthermia. This integrated cell membrane-based cascade-targeting photothermal nanosystem offers a promising avenue for conquering persistent intracellular infections without drug resistance risks.
Collapse
Affiliation(s)
- Jingdi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Haiqin Tang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lizhong Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jieyu Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Siying Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Han M, Xie Y, Wang R, Li Y, Bian C, Xia S. 4-Mercaptopyridine-Modified Sensor for the Sensitive Electrochemical Detection of Mercury Ions. MICROMACHINES 2023; 14:739. [PMID: 37420972 DOI: 10.3390/mi14040739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 03/25/2023] [Indexed: 07/09/2023]
Abstract
As a highly toxic heavy metal ion, mercury ion (Hg2+) pollution has caused serious harm to the environment and human health. In this paper, 4-mercaptopyridine (4-MPY) was selected as the sensing material and decorated on the surface of a gold electrode. Trace Hg2+ could be detected by both differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) methods. The proposed sensor displayed a wide detection range from 0.01 μg/L to 500 μg/L with a low limit of detection (LOD) of 0.002 μg/L by EIS measurements. Combined with molecular simulations and electrochemical analyses, the chelating mechanism between Hg2+ and 4-MPY was explored. Through the analysis of binding energy (BE) values and stability constants, 4-MPY showed an excellent selectivity for Hg2+. In the presence of Hg2+, the coordination of Hg2+ with the pyridine nitrogen of 4-MPY was generated at the sensing region, which caused a change in the electrochemical activity of the electrode surface. Due to the strong specific binding capability, the proposed sensor featured excellent selectivity and an anti-interference capability. Furthermore, the practicality of the sensor for Hg2+ detection was validated with the samples of tap water and pond water, which demonstrated its potential application for on-site environmental detection.
Collapse
Affiliation(s)
- Mingjie Han
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yong Xie
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ri Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Chao Bian
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Shanhong Xia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|