1
|
Zhou B, Huang Z, Gao Z, Hu Y. Formal 1,1-Hydrocyanation Reaction of Alkynyl Halides with Isocyanides Enabled by Dual Nickel/Base Catalysis Relay. Org Lett 2024; 26:10511-10516. [PMID: 39630112 DOI: 10.1021/acs.orglett.4c03901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
We herein describe a formal 1,1-hydrocyanation reaction of alkynyl halides with isocyanides enabled by a dual nickel/base catalysis relay. tert-Butyl isocyanide serves as a "HCN" precursor that is introduced to the α-position of alkynyl halides, and the halogen atom is moved to the β-position. As a result, a series of (Z)-3-bromo/iodo acrylonitrile derivatives could be obtained in moderate yields. Mechanistic experiments were carried out, and the collective data could support our proposal of the mechanism details.
Collapse
Affiliation(s)
- Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengzhe Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhao Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanyuan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Hu T, Beluze C, Fagué V, Kambire OE, Bouyssi D, Monteiro N, Amgoune A. Nickel-Catalyzed Photoredox Allenylation of Alkyl Halides. Org Lett 2024; 26:9519-9524. [PMID: 39454201 DOI: 10.1021/acs.orglett.4c03512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
We report a dual Ni/photoredox-catalyzed cross-coupling method for propargyl carbonates and nonactivated alkyl bromides, facilitating the synthesis of a variety of substituted allenes under mild and practical conditions. Mechanistically, the reaction integrates Ni-catalyzed activation of the propargyl electrophile via SN2' oxidative addition at Ni(I) with silyl radical-induced activation of the alkyl halide through halogen-atom transfer. This methodology provides a gentle approach for introducing allenyl groups into complex halogenated aliphatic molecules, offering further opportunities for derivatization.
Collapse
Affiliation(s)
- Tingjun Hu
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
| | - Camille Beluze
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
| | - Vincent Fagué
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
| | - Oho Eliantine Kambire
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
| | - Didier Bouyssi
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
| | - Nuno Monteiro
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
| | - Abderrahmane Amgoune
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
3
|
Romano C, Martin R. Ni-catalysed remote C(sp 3)-H functionalization using chain-walking strategies. Nat Rev Chem 2024; 8:833-850. [PMID: 39354168 DOI: 10.1038/s41570-024-00649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 10/03/2024]
Abstract
The dynamic translocation of a metal catalyst along an alkyl side chain - often coined as 'chain-walking' - has opened new retrosynthetic possibilities that enable functionalization at unactivated C(sp3)-H sites. The use of nickel complexes in chain-walking strategies has recently gained considerable momentum owing to their versatility for forging sp3 architectures and their redox promiscuity that facilitates both one-electron or two-electron reaction manifolds. This Review discusses the relevance and impact that these processes might have in synthetic endeavours, including mechanistic considerations when appropriate. Particular emphasis is given to the latest discoveries that leverage the potential of Ni-catalysed chain-walking scenarios for tackling transformations that would otherwise be difficult to accomplish, including the merger of chain-walking with other new approaches such as photoredox catalysis or electrochemical activation.
Collapse
Affiliation(s)
- Ciro Romano
- Department of Chemistry, University of Manchester, Manchester, UK.
- Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain.
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
4
|
Yan Z, Ye J, Wang H, Chen T, Xu ZF, Yu M, Li CY. Aerobic Oxysulfonylation of Olefins Using N-Sulfonylaminophthalimides as Sulfonyl Radical Precursors. Org Lett 2024; 26:6647-6651. [PMID: 39073919 DOI: 10.1021/acs.orglett.4c02303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Readily accessible N-sulfonylaminophthalimides were developed to be efficient sulfonyl radical precursors upon being treated with a base/oxidant under mild conditions. The method was applied to the oxysulfonylation of olefins, providing β-ketosulfones and isobenzofurans stereoselectively. On the basis of control experiments, density functional theory calculations, and the literature, a plausible radical mechanism was proposed. The findings offered a chance to develop novel radical precursors based on diversely substituted N-aminophthalimides, which might establish a universal mild approach for the generation of various radicals.
Collapse
Affiliation(s)
- Zhenxing Yan
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jie Ye
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Heng Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tao Chen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ze-Feng Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Mingming Yu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chuan-Ying Li
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Odena C, Santiago TG, Linares ML, Castellanos-Blanco N, McGuire RT, Chaves-Arquero B, Alonso JM, Diéguez-Vázquez A, Tan E, Alcázar J, Buijnsters P, Cañellas S, Martin R. Late-Stage C( sp2)-C( sp3) Diversification via Nickel Oxidative Addition Complexes. J Am Chem Soc 2024; 146:21264-21270. [PMID: 39052124 DOI: 10.1021/jacs.4c08404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Herein, we describe nickel oxidative addition complexes (Ni-OACs) of drug-like molecules as a platform to rapidly generate lead candidates with enhanced C(sp3) fraction. The potential of Ni-OACs to access new chemical space has been assessed not only in C(sp2)-C(sp3) couplings but also in additional bond formations without recourse to specialized ligands and with improved generality when compared to Ni-catalyzed reactions. The development of an automated diversification process further illustrates the robustness of Ni-OACs, thus offering a new gateway to expedite the design-make-test-analyze (DMTA) cycle in drug discovery.
Collapse
Affiliation(s)
- Carlota Odena
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Orgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Tomás G Santiago
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
| | | | - Nahury Castellanos-Blanco
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
| | - Ryan T McGuire
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
| | - Belén Chaves-Arquero
- Janssen-Cilag, S.A., a Johnson & Johnson Company, C/Jarama 75A, 45007 Toledo, Spain
| | - Jose Manuel Alonso
- Janssen-Cilag, S.A., a Johnson & Johnson Company, C/Jarama 75A, 45007 Toledo, Spain
| | | | - Eric Tan
- Janssen Pharmaceutica Nv, A Johnson & Johnson Company, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Jesús Alcázar
- Janssen-Cilag, S.A., a Johnson & Johnson Company, C/Jarama 75A, 45007 Toledo, Spain
| | - Peter Buijnsters
- Janssen Pharmaceutica Nv, A Johnson & Johnson Company, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Santiago Cañellas
- Janssen-Cilag, S.A., a Johnson & Johnson Company, C/Jarama 75A, 45007 Toledo, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
6
|
Michiyuki T, Homölle SL, Pandit NK, Ackermann L. Electrocatalytic Formal C(sp 2)-H Alkylations via Nickel-Catalyzed Cross-Electrophile Coupling with Versatile Arylsulfonium Salts. Angew Chem Int Ed Engl 2024; 63:e202401198. [PMID: 38695843 DOI: 10.1002/anie.202401198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Indexed: 06/15/2024]
Abstract
Producing sp3-hybridized carbon-enriched molecules is of particular interest due to their high success rate in clinical trials. The installation of aliphatic chains onto aromatic scaffolds was accomplished by nickel-catalyzed C(sp2)-C(sp3) cross-electrophile coupling with arylsulfonium salts. Thus, simple non-prefunctionalized arenes could be alkylated through the formation of aryldibenzothiophenium salts. The reaction employs an electrochemical approach to avoid potentially hazardous chemical redox agents, and importantly, the one-pot alkylation proved also viable, highlighting the robustness of our approach.
Collapse
Affiliation(s)
- Takuya Michiyuki
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Simon L Homölle
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Neeraj K Pandit
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
7
|
Tang MP, Zhu L, Deng Y, Shi YX, Kin-Man Lai S, Mo X, Pang XY, Liu C, Jiang W, Tse ECM, Au-Yeung HY. Water and Air Stable Copper(I) Complexes of Tetracationic Catenane Ligands for Oxidative C-C Cross-Coupling. Angew Chem Int Ed Engl 2024; 63:e202405971. [PMID: 38661248 DOI: 10.1002/anie.202405971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
Aqueous soluble and stable Cu(I) molecular catalysts featuring a catenane ligand composed of two dicationic, mutually repelling but mechanically interlocked macrocycles are reported. The ligand interlocking not only fine-tunes the coordination sphere and kinetically stabilizes the Cu(I) against air oxidation and disproportionation, but also buries the hydrophobic portions of the ligands and prevents their dissociation which are necessary for their good water solubility and a sustained activity. These catenane Cu(I) complexes can catalyze the oxidative C-C coupling of indoles and tetrahydroisoquinolines in water, using H2O2 as a green oxidant with a good substrate scope. The successful use of catenane ligands in exploiting aqueous Cu(I) catalysis thus highlights the many unexplored potential of mechanical bond as a design element for exploring transition metal catalysis under challenging conditions.
Collapse
Affiliation(s)
- Man Pang Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Lihui Zhu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yulin Deng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yi-Xiang Shi
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Samuel Kin-Man Lai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Xiaoyong Mo
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Xin-Yu Pang
- Department of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Shenzhen, 518055, P. R. China
| | - Chunyu Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 100083, P. R. China
| | - Wei Jiang
- Department of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Shenzhen, 518055, P. R. China
| | - Edmund Chun Ming Tse
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
8
|
Mendel M, Karl TM, Hamm J, Kaldas SJ, Sperger T, Mondal B, Schoenebeck F. Dynamic stereomutation of vinylcyclopropanes with metalloradicals. Nature 2024; 631:80-86. [PMID: 38898284 PMCID: PMC11222138 DOI: 10.1038/s41586-024-07555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
The ever increasing demands for greater sustainability and lower energy usage in chemical processes call for fundamentally new approaches and reactivity principles. In this context, the pronounced prevalence of odd-oxidation states in less precious metals bears untapped potential for fundamentally distinct reactivity modes via metalloradical catalysis1-3. Contrary to the well-established reactivity paradigm that organic free radicals, upon addition to a vinylcyclopropane, lead to rapid ring opening under strain release-a transformation that serves widely as a mechanistic probe (radical clock)4 for the intermediacy of radicals5-we herein show that a metal-based radical, that is, a Ni(I) metalloradical, triggers reversible cis/trans isomerization instead of opening. The isomerization proceeds under chiral inversion and, depending on the substitution pattern, occurs at room temperature in less than 5 min, requiring solely the addition of the non-precious catalyst. Our combined computational and experimental mechanistic studies support metalloradical catalysis as origin of this profound reactivity, rationalize the observed stereoinversion and reveal key reactivity features of the process, including its reversibility. These insights enabled the iterative thermodynamic enrichment of enantiopure cis/trans mixtures towards a single diastereomer through multiple Ni(I) catalysis rounds and also extensions to divinylcyclopropanes, which constitute strategic motifs in natural product- and total syntheses6. While the trans-isomer usually requires heating at approximately 200 °C to trigger thermal isomerization under racemization to cis-divinylcyclopropane, which then undergoes facile Cope-type rearrangement, the analogous contra-thermodynamic process is herein shown to proceed under Ni(I) metalloradical catalysis under mild conditions without any loss of stereochemical integrity, enabling a mild and stereochemically pure access to seven-membered rings, fused ring systems and spirocycles.
Collapse
Affiliation(s)
- Marvin Mendel
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Teresa M Karl
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Jegor Hamm
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Sherif J Kaldas
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Theresa Sperger
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Bhaskar Mondal
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
9
|
Cagan D, Bím D, Kazmierczak NP, Hadt RG. Mechanisms of Photoredox Catalysis Featuring Nickel-Bipyridine Complexes. ACS Catal 2024; 14:9055-9076. [PMID: 38868098 PMCID: PMC11165457 DOI: 10.1021/acscatal.4c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Metallaphotoredox catalysis can unlock useful pathways for transforming organic reactants into desirable products, largely due to the conversion of photon energy into chemical potential to drive redox and bond transformation processes. Despite the importance of these processes for cross-coupling reactions and other transformations, their mechanistic details are only superficially understood. In this review, we have provided a detailed summary of various photoredox mechanisms that have been proposed to date for Ni-bipyridine (bpy) complexes, focusing separately on photosensitized and direct excitation reaction processes. By highlighting multiple bond transformation pathways and key findings, we depict how photoredox reaction mechanisms, which ultimately define substrate scope, are themselves defined by the ground- and excited-state geometric and electronic structures of key Ni-based intermediates. We further identify knowledge gaps to motivate future mechanistic studies and the development of synergistic research approaches spanning the physical, organic, and inorganic chemistry communities.
Collapse
Affiliation(s)
- David
A. Cagan
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Daniel Bím
- Institute
of Organic Chemistry and Biochemistry, The
Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Nathanael P. Kazmierczak
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Morrison KM, Stradiotto M. The development of cage phosphine 'DalPhos' ligands to enable nickel-catalyzed cross-couplings of (hetero)aryl electrophiles. Chem Sci 2024; 15:7394-7407. [PMID: 38784740 PMCID: PMC11110136 DOI: 10.1039/d4sc01253d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Nickel-catalyzed cross-couplings of (hetero)aryl electrophiles with a diversity of nucleophiles (nitrogen, oxygen, carbon, and others) have evolved into competitive alternatives to well-established palladium- and copper-based protocols for the synthesis of (hetero)aryl products, including (hetero)anilines and (hetero)aryl ethers. A survey of the literature reveals that the use of cage phosphine (CgP) 'DalPhos' (DALhousie PHOSphine) bisphosphine-type ligands operating under thermal conditions currently offers the most broad substrate scope in nickel-catalyzed cross-couplings of this type, especially involving (hetero)aryl chlorides and phenol-derived electrophiles. The development and application of these DalPhos ligands is described in a ligand-specific manner that is intended to serve as a guide for the synthetic chemistry end-user.
Collapse
Affiliation(s)
- Kathleen M Morrison
- Department of Chemistry, Dalhousie University 6274 Coburg Road, P.O. 15000 Halifax Nova Scotia B3H 4R2 Canada
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University 6274 Coburg Road, P.O. 15000 Halifax Nova Scotia B3H 4R2 Canada
| |
Collapse
|
11
|
Mansell JI, Yu S, Li M, Pye E, Yin C, Beltran F, Rossi-Ashton JA, Romano C, Kaltsoyannis N, Procter DJ. Alkyl Cyclopropyl Ketones in Catalytic Formal [3 + 2] Cycloadditions: The Role of SmI 2 Catalyst Stabilization. J Am Chem Soc 2024; 146:12799-12807. [PMID: 38662638 PMCID: PMC11082888 DOI: 10.1021/jacs.4c03073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024]
Abstract
Alkyl cyclopropyl ketones are introduced as versatile substrates for catalytic formal [3 + 2] cycloadditions with alkenes and alkynes and previously unexplored enyne partners, efficiently delivering complex, sp3-rich products. The key to effectively engaging this relatively unreactive new substrate class is the use of SmI2 as a catalyst in combination with substoichiometric amounts of Sm0; the latter likely acting to prevent catalyst deactivation by returning SmIII to the catalytic cycle. In the absence of Sm0, background degradation of the SmI2 catalyst can outrun product formation. For the most recalcitrant alkyl cyclopropyl ketones, catalysis is "switched-on" using these new robust conditions, and otherwise unattainable products are delivered. Combined experimental and computational studies have been used to identify and probe reactivity trends among alkyl cyclopropyl ketones, including more complex bicyclic alkyl cyclopropyl ketones, which react quickly with various partners to give complex products. In addition to establishing alkyl cyclopropyl ketones as a new substrate class in a burgeoning field of catalysis, our study provides vital mechanistic insight and robust, practical approaches for the nascent field of catalysis with SmI2.
Collapse
Affiliation(s)
- Jack I. Mansell
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Song Yu
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Muze Li
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Emma Pye
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Chaofan Yin
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Frédéric Beltran
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - James A. Rossi-Ashton
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ciro Romano
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Nikolas Kaltsoyannis
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David J. Procter
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
12
|
Joven-Sancho D, Echeverri A, Saffon-Merceron N, Contreras-García J, Nebra N. An Organocopper(III) Fluoride Triggering C-CF 3 Bond Formation. Angew Chem Int Ed Engl 2024; 63:e202319412. [PMID: 38147576 DOI: 10.1002/anie.202319412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
Copper(III) fluorides are catalytically competent, yet elusive, intermediates in cross-coupling. The synthesis of [PPh4 ][CuIII (CF3 )3 F] (2), the first stable (isolable) CuIII -F, was accomplished via chloride addition to [CuIII (CF3 )3 (py)] (1) yielding [PPh4 ][CuIII (CF3 )3 Cl(py)] (1⋅Cl), followed by treatment with AgF. The CuIII halides 1⋅Cl and 2 were fully characterized using nuclear magnetic resonance (NMR) spectroscopy, single crystal X-ray diffraction (Sc-XRD) and elemental analysis (EA). Complex 2 proved capable of forging C-CF3 bonds from silyl-capped alkynes. In-depth mechanistic studies combining probes, theoretical calculations, trapping of intermediate 4a ([PPh4 ][CuIII (CF3 )3 (C≡CPh)]) and radical tests unveil the key role of the CuIII acetylides that undergo facile 2e- reductive elimination furnishing the trifluoromethylated alkynes (RC≡CCF3 ), which are industrially relevant synthons in drug discovery, pharma and agrochemistry.
Collapse
Affiliation(s)
- Daniel Joven-Sancho
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Andrea Echeverri
- Laboratoire de Chimie Théorique (LCT), Sorbonne Université, CNRS, 4, Place Jussieu, 75005, Paris, France
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse ICT-UAR2599, Université Paul Sabatier, CNRS, 31062, Toulouse Cedex, France
| | - Julia Contreras-García
- Laboratoire de Chimie Théorique (LCT), Sorbonne Université, CNRS, 4, Place Jussieu, 75005, Paris, France
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
13
|
Bím D, Luedecke KM, Cagan DA, Hadt RG. Light Activation and Photophysics of a Structurally Constrained Nickel(II)-Bipyridine Aryl Halide Complex. Inorg Chem 2024; 63:4120-4131. [PMID: 38376134 PMCID: PMC11000520 DOI: 10.1021/acs.inorgchem.3c03822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Transition-metal photoredox catalysis has transformed organic synthesis by harnessing light to construct complex molecules. Nickel(II)-bipyridine (bpy) aryl halide complexes are a significant class of cross-coupling catalysts that can be activated via direct light excitation. This study investigates the effects of molecular structure on the photophysics of these catalysts by considering an underexplored, structurally constrained Ni(II)-bpy aryl halide complex in which the aryl and bpy ligands are covalently tethered alongside traditional unconstrained complexes. Intriguingly, the tethered complex is photochemically stable but features a reversible Ni(II)-C(aryl) ⇄ [Ni(I)···C(aryl)•] equilibrium upon direct photoexcitation. When an electrophile is introduced during photoirradiation, we demonstrate a preference for photodissociation over recombination, rendering the parent Ni(II) complex a stable source of a reactive Ni(I) intermediate. Here, we characterize the reversible photochemical behavior of the tethered complex by kinetic analyses, quantum chemical calculations, and ultrafast transient absorption spectroscopy. Comparison to the previously characterized Ni(II)-bpy aryl halide complex indicates that the structural constraints considered here dramatically influence the excited state relaxation pathway and provide insight into the characteristics of excited-state Ni(II)-C bond homolysis and aryl radical reassociation dynamics. This study enriches the understanding of molecular structure effects in photoredox catalysis and offers new possibilities for designing customized photoactive catalysts for precise organic synthesis.
Collapse
Affiliation(s)
- Daniel Bím
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Kaitlin M Luedecke
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - David A Cagan
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan G Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
14
|
Gerken JB, Stamoulis A, MacDonnell ML, Stahl SS. Rate Equations for Reversible Disproportionation Reactions and Fitting to Time-Course Data. J Phys Chem A 2024; 128:328-332. [PMID: 38157490 DOI: 10.1021/acs.jpca.3c05232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Integrated rate equations are straightforward to fit to experimental data to verify a proposed mechanism and to extract kinetic parameters. Such equations are derived for reversible disproportionation/comproportionation reactions with any set of initial concentrations. Extraction of forward and reverse rate constants from experimental data by fitting the rate law to the data is demonstrated for the disproportionation of 2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl (TEMPO) under acidic conditions where the approach to equilibrium is observed.
Collapse
Affiliation(s)
- James B Gerken
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Alexios Stamoulis
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Madeline L MacDonnell
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|