1
|
Guo J, Tan W, Xu B. Enzymatic self-assembly of short peptides for cell spheroid formation. J Mater Chem B 2024. [PMID: 39370899 DOI: 10.1039/d4tb01154f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Cell spheroids, including organoids, serve as a valuable link between in vitro systems and in vivo animal models, offering powerful tools for studying cell biology in a three-dimensional environment. However, existing methods for generating cell spheroids are time consuming or difficult to scale up for large-scale production. Our recent study has revealed that transcytotic peptide assemblies, which transform from nanoparticles to nanofibers by enzymatic reactions, can create an intercellular fibril/gel, accelerating cell spheroid formation from a 2D cell culture or a cell suspension. While this finding presents an alternative approach for generating cell spheroids, the specific structural features required for efficient cell spheroid formation remain unclear. Based on our observation that a phosphotetrapeptide with a biphenyl cap at its N-terminus enables cell spheroid formation, we produced 10 variants of the original peptide. The variants explored modifications to the peptide backbone, length, electronic properties of the biphenyl capping group, and the type of phosphorylated amino acid residue. We then evaluated their ability for inducing cell spheroid formation. Our analysis revealed that, among the tested molecules, peptides with C-terminal phosphotyrosine, low critical micelle concentration, and dephosphorylation-guided nanoparticle to nanofiber morphological transition were the most effective in inducing the formation of cell spheroids. This work represents the first example to correlate the thermodynamic properties (e.g., self-assembling ability) and kinetic behavior (e.g., enzymatic dephosphorylation) of peptides with the efficacy of controlling intercellular interaction, thus offering valuable insights into using enzymatic self-assembly to generate peptide assemblies for biological applications.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA.
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA.
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA.
| |
Collapse
|
2
|
Xu D, Bi S, Li J, Ma S, Yu ZA, Wang Y, Chen H, Zhan J, Song X, Cai Y. Legumain-Guided Ferulate-Peptide Self-Assembly Enhances Macrophage-Endotheliocyte Partnership to Promote Therapeutic Angiogenesis After Myocardial Infarction. Adv Healthc Mater 2024:e2402056. [PMID: 39252665 DOI: 10.1002/adhm.202402056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/31/2024] [Indexed: 09/11/2024]
Abstract
Promoting angiogenesis and modulating the inflammatory microenvironment are promising strategies for treating acute myocardial infarction (MI). Macrophages are crucial in regulating inflammation and influencing angiogenesis through interactions with endothelial cells. However, current therapies lack a comprehensive assessment of pathological and physiological subtleties, resulting in limited myocardial recovery. In this study, legumain-guided ferulate-peptide nanofibers (LFPN) are developed to facilitate the interaction between macrophages and endothelial cells in the MI lesion and modulate their functions. LFPN exhibits enhanced ferulic acid (FA) aggregation and release, promoting angiogenesis and alleviating inflammation. The multifunctional role of LFPN is validated in cells and an MI mouse model, where it modulated macrophage polarization, attenuated inflammatory responses, and induces endothelial cell neovascularization compare to FA alone. LFPN supports the preservation of border zone cardiomyocytes by regulating inflammatory infiltration in the ischemic core, leading to significant functional recovery of the left ventricle. These findings suggest that synergistic therapy exploiting multicellular interaction and enzyme guidance may enhance the clinical translation potential of smart-responsive drug delivery systems to treat MI. This work emphasizes macrophage-endothelial cell partnerships as a novel paradigm to enhance cell interactions, control inflammation, and promote therapeutic angiogenesis.
Collapse
Affiliation(s)
- Delong Xu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shenghui Bi
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jiejing Li
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shaodan Ma
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Ze-An Yu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yenan Wang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Huiming Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jie Zhan
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xudong Song
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
3
|
Zhang X, Zhang B, Zhang Y, Ding Y, Zhang Z, Liu Q, Yang Z, Wang L, Gao J. Copper-Induced Supramolecular Peptide Assemblies for Multi-Pathway Cell Death and Tumor Inhibition. Angew Chem Int Ed Engl 2024; 63:e202406602. [PMID: 38837577 DOI: 10.1002/anie.202406602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Although self-assembly has emerged as an effective tool for fabricating biomaterials, achieving precise control over the morphologies and functionalities of the resultant assemblies remains an ongoing challenge. Inspired by the copper peptide naturally present in human plasma, in this study, we designed a synthetic precursor, FcGH. FcGH can self-assemble via two distinct pathways: spontaneous and Cu2+-induced. These two assembly pathways enabled the formation of assemblies with tunable morphologies by adjusting the amount of added Cu2+. We found that the nanoparticles formed by Cu2+-induced self-assembly exhibited a significantly higher cellular uptake efficiency than the wormlike fibers formed spontaneously. Moreover, this Cu2+-induced assembly process occurred spontaneously at a 1 : 1 molar ratio of Cu2+ to FcGH, avoiding the excessive use of Cu2+ and a tedious preparation procedure. By co-assembling with 10-hydroxycamptothecin (HCPT)-conjugated FcGH, Cu2+-induced supramolecular nanodrugs elicited multiple cell death modalities in cancer cells with elevated immunogenicity, enhancing the therapeutic effect compared to free HCPT. This study highlights Cu2+-induced self-assembly as an efficient tool for directing the assembly of nanodrugs and for synergistic tumor therapy.
Collapse
Affiliation(s)
- Xiangyang Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| | - Buyue Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| | - Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| | - Yinghao Ding
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| | - Zhenghao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University Xuzhou, Jiangsu, 221002, China
| | - Ling Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| |
Collapse
|
4
|
Li J, Song X, Liao X, Shi Y, Chen H, Xiao Q, Liu F, Zhan J, Cai Y. Adaptive enzyme-responsive self-assembling multivalent apelin ligands for targeted myocardial infarction therapy. J Control Release 2024; 372:571-586. [PMID: 38897292 DOI: 10.1016/j.jconrel.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Microvascular dysfunction following myocardial infarction exacerbates coronary flow obstruction and impairs the preservation of ventricular function. The apelinergic system, known for its pleiotropic effects on improving vascular function and repairing ischemic myocardium, has emerged as a promising therapeutic target for myocardial infarction. Despite its potential, the natural apelin peptide has an extremely short circulating half-life. Current apelin analogs have limited receptor binding efficacy and poor targeting, which restricts their clinical applications. In this study, we utilized an enzyme-responsive peptide self-assembly technique to develop an enzyme-responsive small molecule peptide that adapts to the expression levels of matrix metalloproteinases in myocardial infarction lesions. This peptide is engineered to respond to the high concentration of matrix metalloproteinases in the lesion area, allowing for precise and abundant presentation of the apelin motif. The changes in hydrophobicity allow the apelin motif to self-assemble into a supramolecular multivalent peptide ligand-SAMP. This self-assembly behavior not only prolongs the residence time of apelin in the myocardial infarction lesion but also enhances the receptor-ligand interaction through increased receptor binding affinity due to multivalency. Studies have demonstrated that SAMP significantly promotes angiogenesis after ischemia, reduces cardiomyocyte apoptosis, and improves cardiac function. This novel therapeutic strategy offers a new approach to restoring coronary microvascular function and improving damaged myocardium after myocardial infarction.
Collapse
Affiliation(s)
- Jiejing Li
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xudong Song
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Liao
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yihan Shi
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huiming Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuqun Xiao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fengjiao Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Zhan
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Jiao M, Li X, Liu H, Cai P, Yang X, McHugh KJ, Zheng B, Sun J, Zhang P, Luo X, Jing L. Aqueous Grown Quantum Dots with Robust Near-Infrared Fluorescence for Integrated Traumatic Brain Injury Diagnosis and Surgical Monitoring. ACS NANO 2024; 18:19038-19053. [PMID: 38979966 DOI: 10.1021/acsnano.4c03123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Surgical intervention is the most common first-line treatment for severe traumatic brain injuries (TBIs) associated with high intracranial pressure, while the complexity of these surgical procedures often results in complications. Surgeons often struggle to comprehensively evaluate the TBI status, making it difficult to select the optimal intervention strategy. Here, we introduce a fluorescence imaging-based technology that uses high-quality silver indium selenide-based quantum dots (QDs) for integrated TBI diagnosis and surgical guidance. These engineered, poly(ethylene glycol)-capped QDs emit in the near-infrared region, are resistant to phagocytosis, and importantly, are ultrastable after the epitaxial growth of an aluminum-doped zinc sulfide shell in the aqueous phase that renders the QDs resistant to long-term light irradiation and complex physiological environments. We found that intravenous injection of QDs enabled both the precise diagnosis of TBI in a mouse model and, more importantly, the comprehensive evaluation of the TBI status before, during, and after an operation to distinguish intracranial from superficial hemorrhages, provide real-time monitoring of the secondary hemorrhage, and guide the decision making on the evacuation of intracranial hematomas. This QD-based diagnostic and monitoring system could ultimately complement existing clinical tools for treating TBI, which may help surgeons improve patient outcomes and avoid unnecessary procedures.
Collapse
Affiliation(s)
- Mingxia Jiao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Xiaoqi Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Hui Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Peng Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Xiling Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Kevin J McHugh
- Departments of Bioengineering and Chemistry, Rice University, Houston, Texas 77005, United States
| | - Bowen Zheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Jiachen Sun
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Peisen Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Lihong Jing
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| |
Collapse
|
6
|
Wen X, Zhang C, Tian Y, Miao Y, Liu S, Xu JJ, Ye D, He J. Smart Molecular Imaging and Theranostic Probes by Enzymatic Molecular In Situ Self-Assembly. JACS AU 2024; 4:2426-2450. [PMID: 39055152 PMCID: PMC11267545 DOI: 10.1021/jacsau.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Enzymatic molecular in situ self-assembly (E-MISA) that enables the synthesis of high-order nanostructures from synthetic small molecules inside a living subject has emerged as a promising strategy for molecular imaging and theranostics. This strategy leverages the catalytic activity of an enzyme to trigger probe substrate conversion and assembly in situ, permitting prolonging retention and congregating many molecules of probes in the targeted cells or tissues. Enhanced imaging signals or therapeutic functions can be achieved by responding to a specific enzyme. This E-MISA strategy has been successfully applied for the development of enzyme-activated smart molecular imaging or theranostic probes for in vivo applications. In this Perspective, we discuss the general principle of controlling in situ self-assembly of synthetic small molecules by an enzyme and then discuss the applications for the construction of "smart" imaging and theranostic probes against cancers and bacteria. Finally, we discuss the current challenges and perspectives in utilizing the E-MISA strategy for disease diagnoses and therapies, particularly for clinical translation.
Collapse
Affiliation(s)
- Xidan Wen
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing 210008, China
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Chao Zhang
- Department
of Neurosurgery, Zhujiang Hospital, Southern
Medical University, Guangzhou 510282, China
| | - Yuyang Tian
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Yinxing Miao
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Shaohai Liu
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Jing-Juan Xu
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Deju Ye
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Jian He
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing 210008, China
| |
Collapse
|
7
|
Kou J, Zhu Z, Jiang J, Chen L, Zhang K, Shan G, Wang X, Su Z, Sun C. A porous aromatic cage-based electrochemical sensor for enantioselective recognition of DOPA. Chem Commun (Camb) 2024; 60:6949-6952. [PMID: 38887804 DOI: 10.1039/d4cc02622e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
An electrochemical sensor based on porous aromatic cages was reported, which can achieve chiral sensing of DOPA enantiomers. The prepared sensor can achieve a recognition efficiency of up to 2.6 for DOPA enantiomers. The enhanced recognition efficiency could be attributed to the cooperation of intermolecular interactions, and the efficient charge transfer process.
Collapse
Affiliation(s)
- Junning Kou
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China.
| | - Ziyu Zhu
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China.
| | - Jianzhu Jiang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China.
| | - Li Chen
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin, 133002, China
| | - Kunhao Zhang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
| | - Guogang Shan
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China.
| | - Xinlong Wang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China.
| | - Zhongmin Su
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin, 133002, China
| | - Chunyi Sun
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China.
| |
Collapse
|
8
|
Ding Y, Zhang S, Li W, Chen X, Li J, Zhang X, Zhang Z, Hu Y, Yang Z, Hu ZW, Shen X. Enzyme-Instructed Photoactivatable Supramolecular Antigens on Cancer Cell Membranes for Precision-Controlled T-Cell-Based Cancer Immunotherapy. NANO LETTERS 2024. [PMID: 38838340 DOI: 10.1021/acs.nanolett.4c01587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Cancer immunotherapies based on cytotoxic CD8+ T lymphocytes (CTLs) are highly promising for cancer treatment. The specific interaction between T-cell receptors and peptide-MHC-I complexes (pMHC-I) on cancer cell membranes critically determines their therapeutic outcomes. However, the lack of appropriate endogenous antigens for MHC-I presentation disables tumor recognition by CTLs. By devising three antigen-loaded self-assembling peptides of pY-K(Ag)-ERGD, pY-K(Ag)-E, and Y-K(Ag)-ERGD to noncovalently generate light-activatable supramolecular antigens at tumor sites in different manners, we report pY-K(Ag)-ERGD as a promising candidate to endow tumor cells with pMHC-I targets on demand. Specifically, pY-K(Ag)-ERGD first generates low-antigenic supramolecular antigens on cancer cell membranes, and a successive light pulse allows antigen payloads to efficiently release from the supramolecular scaffold, directly producing antigenic pMHC-I. Intravenous administration of pY-K(Ag)-ERGD enables light-controlled tumor inhibition when combined with adoptively transferred antigen-specific CTLs. Our strategy is feasible for broadening tumor antigen repertoires for T-cell immunotherapies and advancing precision-controlled T-cell immunotherapies.
Collapse
Affiliation(s)
- Yinghao Ding
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Shengyi Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Wei Li
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xiaodong Chen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
| | - Jun Li
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xiangyang Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhenghao Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yuanbo Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
| | - Zhimou Yang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Wen Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xian Shen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
| |
Collapse
|
9
|
Qiao Y, Wu G, Liu Z, He H, Tan W, Xu B. Assessment of the Enzymatic Dephosphorylation Kinetics in the Assemblies of a Phosphopentapeptide that Forms Intranuclear Nanoribbons. Biomacromolecules 2024; 25:1310-1318. [PMID: 38265878 PMCID: PMC11071069 DOI: 10.1021/acs.biomac.3c01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Although the formation of peptide assemblies catalyzed by alkaline phosphatase (ALP) has received increasing attention in inhibiting cancer cells, the detailed enzyme kinetics of the dephosphorylation of the corresponding phosphopeptide assemblies have yet to be determined. We recently discovered that assemblies from a phosphopentapeptide can form intracellular nanoribbons that kill induced pluripotent stem cells or osteosarcoma cells, but the kinetics of enzymatic dephosphorylation remain unknown. Thus, we chose to examine the enzyme kinetics of the dephosphorylation of the phosphopentapeptide [NBD-LLLLpY (1)] from concentrations below to above its critical micelle concentration (CMC). Our results show that the phosphopeptide exhibits a CMC of 75 μM in phosphate saline buffer, and the apparent Vmax and Km values of alkaline phosphatase catalyzed dephosphorylation are approximately 0.24 μM/s and 5.67 mM, respectively. Despite dephosphorylation remaining incomplete at 60 min in all the concentrations tested, dephosphorylation of the phosphopeptide at concentrations of 200 μM or above mainly results in nanoribbons, dephosphorylation at concentrations of CMC largely produces nanofibers, and dephosphorylation below the CMC largely generates nanoparticles. Moreover, the formation of nanoribbons correlates with the intranuclear accumulation of the pentapeptide. By providing the first examination of the enzymatic kinetics of phosphopeptide assemblies, this work further supports the notion that the assemblies of phosphopentapeptides can act as a new functional entity for controlling cell fates.
Collapse
Affiliation(s)
- Yuchen Qiao
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Grace Wu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Zhiyu Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
10
|
Belluati A, Happel D, Erbe M, Kirchner N, Szelwicka A, Bloch A, Berner V, Christmann A, Hertel B, Pardehkhorram R, Reyhani A, Kolmar H, Bruns N. Self-decorating cells via surface-initiated enzymatic controlled radical polymerization. NANOSCALE 2023; 15:19486-19492. [PMID: 38051112 DOI: 10.1039/d3nr04008a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Through the innovative use of surface-displayed horseradish peroxidase, this work explores the enzymatic catalysis of both bioRAFT polymerization and bioATRP to prompt polymer synthesis on the surface of Saccharomyces cerevisiae cells, with bioATRP outperforming bioRAFT polymerization. The resulting surface modification of living yeast cells with synthetic polymers allows for a significant change in yeast phenotype, including growth profile, aggregation characteristics, and conjugation of non-native enzymes to the clickable polymers on the cell surface, opening new avenues in bioorthogonal cell-surface engineering.
Collapse
Affiliation(s)
- Andrea Belluati
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
- Centre for Synthetic Biology, Technical University of Darmstadt, Merckstraße 25, 64283 Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glashow G1 1XL, UK
| | - Dominic Happel
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Malte Erbe
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Nicole Kirchner
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Anna Szelwicka
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Adrian Bloch
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Valeria Berner
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Andreas Christmann
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Brigitte Hertel
- Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Raheleh Pardehkhorram
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Amin Reyhani
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Harald Kolmar
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
- Centre for Synthetic Biology, Technical University of Darmstadt, Merckstraße 25, 64283 Darmstadt, Germany
| | - Nico Bruns
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
- Centre for Synthetic Biology, Technical University of Darmstadt, Merckstraße 25, 64283 Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glashow G1 1XL, UK
| |
Collapse
|