1
|
Zhou Q, Jiang X, Zhang X, Wang D, Yang G, Zhou H, Wu Y, Guo F, Chen M, Diao G, Ni L. Polyoxomolybdate-Based Metal-Organic Framework-Derived Cu-Embedded Molybdenum Dioxide Hybrid Nanoparticles as Highly Efficient Electrocatalysts for Al-S Batteries. CHEMSUSCHEM 2024; 17:e202400424. [PMID: 38682649 DOI: 10.1002/cssc.202400424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/01/2024]
Abstract
High-performance rechargeable aluminum-sulfur batteries (RASB) have great potential for various applications owing to their high theoretical capacity, abundant sulfur resources, and good safety. Nevertheless, the practical application of RASB still faces several challenges, including the polysulfide shuttle phenomenon and low sulfur utilization efficiency. Here, we first developed a synergistic copper heterogeneous metal oxide MoO2 derived from polymolybdate-based metal-organic framework as an efficient catalyst for mitigating polysulfide diffusion. This composite enhances sulfur utilization and electrical conductivity of the cathode. DFT calculations and experimental results reveal the catalyst Cu/MoO2@C not only effectively anchors aluminum polysulfides (AlPSs) to mitigate the shuttle effect, but also significantly promotes the catalytic conversion of AlPSs on the sulfur cathode side during charging and discharging. The unique nanostructure contains abundant electrocatalytic active sites of oxide nanoparticles and Cu clusters, resulting in excellent electrochemical performance. Consequently, the established RASB exhibits an initial capacity of 875 mAh g-1 at 500 mA g-1 and maintains a capacity of 967 mAh g-1 even at a high temperature of 50 °C.
Collapse
Affiliation(s)
- Qiuping Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Xinyuan Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Xuecheng Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Dawei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Guang Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - He Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Yuchao Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Fang Guo
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, P. R. China
| | - Ming Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Guowang Diao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Lubin Ni
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| |
Collapse
|
2
|
Zhou Q, Zhang X, Wu Y, Jiang X, Li T, Chen M, Ni L, Diao G. Polyoxometalates@Metal-Organic Frameworks Derived Bimetallic Co/Mo 2 C Nanoparticles Embedded in Carbon Nanotube-Interwoven Hierarchically Porous Carbon Polyhedron Composite as a High-Efficiency Electrocatalyst for Al-S Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304515. [PMID: 37541304 DOI: 10.1002/smll.202304515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Indexed: 08/06/2023]
Abstract
Al-S battery (ASB) is a promising energy storage device, notable for its safety, crustal abundance, and high theoretical energy density. However, its development faces challenges due to slow reaction kinetics and poor reversibility. The creation of a multifunctional cathode material that can both adsorb polysulfides and accelerate their conversion is key to advancing ASB. Herein, a composite composed of polyoxometalate nanohybridization-derived Mo2 C and N-doped carbon nanotube-interwoven polyhedrons (Co/Mo2 C@NCNHP) is proposed for the first time as an electrochemical catalyst in the sulfur cathode. This composite improves the utilization and conductivity of sulfur within the cathode. DFT calculations and experimental results indicate that Co enables the chemisorption of polysulfides while Mo2 C catalyzes the reduction reaction of long-chain polysulfides. X-ray photoelectron spectroscopy (XPS) and in situ UV analysis reveal the different intermediates of Al polysulfide species in Co/Mo2 C@NCNHP during discharging/charging. As a cathode material for ASB, Co/Mo2 C@NCNHP@S composite can deliver a discharge-charge voltage hysteresis of 0.75 V with a specific capacity of 370 mAh g-1 after 200 cycles at 1A g-1 .
Collapse
Affiliation(s)
- Qiuping Zhou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Xuecheng Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Yuchao Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Xinyuan Jiang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Tangsuo Li
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Ming Chen
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Lubin Ni
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Guowang Diao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| |
Collapse
|
3
|
Wu Y, Wu N, Jiang X, Duan S, Li T, Zhou Q, Chen M, Diao G, Wu Z, Ni L. Bifunctional K 3PW 12O 40/Graphene Oxide-Modified Separator for Inhibiting Polysulfide Diffusion and Stabilizing Lithium Anode. Inorg Chem 2023; 62:15440-15449. [PMID: 37700509 DOI: 10.1021/acs.inorgchem.3c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Lithium-sulfur (Li-S) batteries are considered as promising candidates for next-generation batteries due to their high theoretical energy density. However, the practical application of Li-S batteries is still hindered by several challenges, such as the polysulfide shuttle and the growth of lithium dendrites. Herein, we introduce a bifunctional K3PW12O40/graphene oxide-modified polypropylene separator (KPW/GO/PP) as a highly effective solution for mitigating polysulfide diffusion and protecting the lithium anode in Li-S batteries. By incorporating KPW into a densely stacked nanostructured graphene oxide (GO) barrier membrane, we synergistically capture and rapidly convert lithium polysulfides (LiPSs) electrochemically, thus effectively suppressing the shuttling effect. Moreover, the KPW/GO/PP separator can stabilize the lithium metal anode during cycling, suppress dendrite formation, and ensure a smooth and dense lithium metal surface, owing to regulated Li+ flux and uniform Li nucleation. Consequently, the constructed KPW/GO/PP separator delivered a favorable initial specific capacity (1006 mAh g-1) and remarkable cycling performance at 1.0 C (626 mAh g-1 for up to 500 cycles with a decay rate of 0.075% per cycle).
Collapse
Affiliation(s)
- Yuchao Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Ni Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Xinyuan Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Suqin Duan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Tangsuo Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Qiuping Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Ming Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Guowang Diao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Zhen Wu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Lubin Ni
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| |
Collapse
|
4
|
The current state of electrolytes and cathode materials development in the quest for aluminum-sulfur batteries. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|