1
|
Pal M, Bera A, Masarkar N, Upadhyay A, Mukherjee S, Roy M. Targeted Chemo-Phototherapy in Red Light with Novel Doxorubicin and Iron(III) Complex-Functionalized Gold Nanoconjugate (Dox-Fe@FA-AuNPs). Chem Asian J 2024; 19:e202400616. [PMID: 38923831 DOI: 10.1002/asia.202400616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The anticancer efficacy of doxorubicin, an anthracycline-based and FDA-approved chemotherapeutic drug, is significantly hindered by acquired chemoresistance and severe side effects despite its potent anticancer properties. To overcome these challenges, we developed an innovative therapeutic formulation that integrates targeted chemotherapy and phototherapy within a single platform using gold nanoparticles (AuNPs). This novel nanoconjugate, designated as Dox-Fe@FA-AuNPs, is co-functionalized with folic acid, doxorubicin, and an iron(III)-phenolate/carboxylate complex, enabling cancer-specific drug activation. Here, we report the synthesis, characterization, and comprehensive physico-chemical and biological evaluations of Dox-Fe@FA-AuNPs. The nanoconjugate exhibited excellent solubility, stability, and enhanced cellular uptake in folate receptor-positive cancer cells. The nanoconjugate was potently cytotoxic against HeLa and MDA-MB-231 cancer cells (HeLa: 105.5±16.52 μg mL-1; MDA-MB-231: 112.0±12.31 μg mL-1; MDA-MB-231 (3D): 156.31±19.35 μg mL-1) while less cytotoxic to the folate(-) cancer cells (MCF-7, A549 and HepG2). The cytotoxicity was attributed to the pH-dependent release of doxorubicin, which preferentially occurs in the acidic tumor microenvironment. Additionally, under red light irradiation, the nanoconjugate generated ROS, inducing caspase-3/7-dependent apoptosis with a photo-index (PI) >50, and inhibited cancer cell migration. Our findings underscore the potential of Dox-Fe@FA-AuNPs as a highly effective and sustainable platform for targeted chemo-phototherapy.
Collapse
Affiliation(s)
- Maynak Pal
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bangalore, 560012, Karnataka
| | - Neha Masarkar
- Department of Biochemistry, AIIMS Bhopal, Saket Nagar, Bhopal, Madhya Pradesh
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bangalore, 560012, Karnataka
| | - Sukhes Mukherjee
- Department of Biochemistry, AIIMS Bhopal, Saket Nagar, Bhopal, Madhya Pradesh
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur
- Department of Chemistry, National Institute of Technology Agartala, Jirania, 799046, Tripura West
| |
Collapse
|
2
|
Das U, Paira P. Exploring the phototoxicity of GSH-resistant 2-(5,6-dichloro-1 H-benzo[ d]imidazol-2-yl)quinoline-based Ir(III)-PTA complexes in MDA-MB-231 cancer cells. Dalton Trans 2024; 53:6459-6471. [PMID: 38512047 DOI: 10.1039/d3dt04361d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Metal complexes play a crucial role in photo-activated chemotherapy (PACT), which has recently been used to treat specific disorders. Triple-negative breast cancer has an enormously high rate of relapse due to the existence and survival of cancer stem cells (CSCs) characterized by increased amounts of glutathione (GSH). Hence, designing a phototoxic molecule is an enticing area of research to combat triple-negative breast cancer (TNBC) via GSH depletion and DNA photocleavage. Herein, we focus on the application of PTA and non-PTA Ir(III) complexes for phototoxicity in the absence and presence of GSH against MDA-MB-231 TNBC cells. Between these two complexes, [Cp*IrIII(DD)PTA]·2Cl (DDIRP) exhibited better phototoxicity (IC50 ∼ 2.80 ± 0.52 μM) compared to the non-PTA complex [Cp*IrIII(DD)Cl]·Cl (DDIR) against TNBC cells because of the high GSH resistance power of the complex DDIRP. The significant potency of the complex DDIRP under photo irradiation in both normoxia and hypoxia conditions can be attributed to selective transportation, high cellular permeability and uptake towards the nucleus, GSH depletion by GSH-GSSG conversion, the ability of strong DNA binding including intercalation, and oxidative stress. The strong affinity to serum albumin, which serves as a carrier protein, aids in the transport of the complex to its target site while preventing glutathione (GSH) deactivation. Consequently, the complex DDIRP was developed as a suitable phototoxic complex in selective cancer therapy, ruling over the usual chemotherapeutic drug cisplatin and the PDT drug Photofrin. The ability of ROS generation under hypoxic conditions delivers this complex as a hypoxia-efficient selective metallodrug for the treatment of TNBC.
Collapse
Affiliation(s)
- Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Adhikari S, Nath P, Das A, Datta A, Baildya N, Duttaroy AK, Pathak S. A review on metal complexes and its anti-cancer activities: Recent updates from in vivo studies. Biomed Pharmacother 2024; 171:116211. [PMID: 38290253 DOI: 10.1016/j.biopha.2024.116211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Research into cancer therapeutics has uncovered various potential medications based on metal-containing scaffolds after the discovery and clinical applications of cisplatin as an anti-cancer agent. This has resulted in many metallodrugs that can be put into medical applications. These metallodrugs have a wider variety of functions and mechanisms of action than pure organic molecules. Although platinum-based medicines are very efficient anti-cancer agents, they are often accompanied by significant side effects and toxicity and are limited by resistance. Some of the most studied and developed alternatives to platinum-based anti-cancer medications include metallodrugs based on ruthenium, gold, copper, iridium, and osmium, which showed effectiveness against many cancer cell lines. These metal-based medicines represent an exciting new category of potential cancer treatments and sparked a renewed interest in the search for effective anti-cancer therapies. Despite the widespread development of metal complexes touted as powerful and promising in vitro anti-cancer therapeutics, only a small percentage of these compounds have shown their worth in vivo models. Metallodrugs, which are more effective and less toxic than platinum-based drugs and can treat drug-resistant cancer cells, are the focus of this review. Here, we highlighted some of the most recently developed Pt, Ru, Au, Cu, Ir, and Os complexes that have shown significant in vivo antitumor properties between 2017 and 2023.
Collapse
Affiliation(s)
- Suman Adhikari
- Department of Chemistry, Govt. Degree Collage, Dharmanagar, Tripura (N) 799253, India.
| | - Priyatosh Nath
- Department of Human Physiology, Tripura University, Suryamaninagar, West Tripura 799022, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Abhijit Datta
- Department of Botany, Ambedkar College, Fatikroy, Unakoti 799290, Tripura, India
| | - Nabajyoti Baildya
- Department of Chemistry, Milki High School, Milki, Malda 732209, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
4
|
Pal M, Upadhyay A, Masarkar N, Bera A, Mukherjee S, Roy M. Folate-assisted targeted photocytotoxicity of red-light-activable iron(III) complex co-functionalized gold nanoconjugates (Fe@FA-AuNPs) against HeLa and triple-negative MDA-MB-231 cancer cells. Dalton Trans 2024; 53:2108-2119. [PMID: 38180438 DOI: 10.1039/d3dt03581f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Photo-redox chemistry resulting from ligand to metal charge transfer in red-light-activable iron(III) complexes could be a potent strategic tool for next-generation photochemotherapeutic applications. Herein, we developed an iron(III) complex and folate co-functionalized gold nanoconjugate (Fe@FA-AuNPs) and thoroughly characterized it with NMR, ESI MS, UV-visible, EPR, EDX, XPS, powder X-ray diffraction, TEM and DLS studies. There was a remarkable shift in the SPR band of AuNPs to 680 nm, and singlet oxygen (1O2) and hydroxyl radicals were potently generated upon red-light activation, which were probed by UV-visible and EPR spectroscopic assays. Cellular uptake studies of the nanoconjugate (Fe@FA-AuNPs) revealed significantly higher uptake in folate(+) cancer cells (HeLa and MDA-MB-231) than folate(-) (A549) cancer cells or normal cells (HPL1D), indicating the targeting potential of the nanoconjugate. Confocal imaging indicated primarily mitochondrial localization. The IC50 values of the nanoconjugate determined from a cell viability assay in HeLa, MDA-MB-231, and A549 cells were 27.83, 39.91, and 69.54 μg mL-1, respectively in red light, while in the dark the values were >200 μg mL-1; the photocytotoxicity was correlated with the cellular uptake of the nanoconjugate. The nanocomposite exhibited similar photocytotoxicity (IC50 in red light, 37.35 ± 8.29 μg mL-1 and IC50 in the dark, >200 μg mL-1). Mechanistic studies revealed that intracellular generation of ROS upon red-light activation led to apoptosis in HeLa cells. Scratch-wound-healing assays indicated the inhibition of the migration of MDA-MB-231 cells treated with the nanoconjugate and upon photo-activation. Overall, the nanoconjugate has emerged as a potent tool for next-generation photo-chemotherapeutics in the clinical arena of targeted cancer therapy.
Collapse
Affiliation(s)
- Maynak Pal
- Department of Chemistry, National Institute of Technology Manipur, Langol 795004, Imphal (Manipur), India.
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Neha Masarkar
- Department of Biochemistry, All India Institute of Medical Science (AIIMS), Saket Nagar, Bhopal, Madhya Pradesh, 462026, India
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Science (AIIMS), Saket Nagar, Bhopal, Madhya Pradesh, 462026, India
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol 795004, Imphal (Manipur), India.
| |
Collapse
|
5
|
Das R, Paira P. GSH resistant, luminescent 2-(pyren-1-yl)-1 H-imidazo[4,5- f][1,10]phenanthroline-based Ru(II)/Ir(III)/Re(I) complexes for phototoxicity in triple-negative breast cancer cells. Dalton Trans 2023; 52:15365-15376. [PMID: 37493615 DOI: 10.1039/d3dt01667f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Selective chemotherapeutic strategies necessitate the emergence of a photosensitive scaffold to abate the nuisance of cancer. In the current context, photo-activated chemotherapy (PACT) has, therefore, appeared to be very effective to vanquish the vehemence of triple-negative breast cancer (TNBC). Metal complexes have been identified to act well against cancer cell microenvironment (high GSH content, low pH, and hypoxia), and thus they have been employed in the treatment of various types of cancer. As TNBC is very challenging to treat owing to its poor prognosis, lack of a specific target, high chance of relapse, and strong metastatic ability, herein we have aspired to design GSH-resistant phototoxic Ru(II)/Ir(III)/Re(I) based pyrene imidazophenathroline complexes to selectively avert the triple-negative breast cancer. The application of complexes, [RuL], [IrL], and [ReL] in the absence and in the presence of GSH against MDA-MB-231TNBC cells, has revealed that they are very active upon irradiation of visible light compared to dark due to the creation of copious singlet oxygen (1O2) as reactive oxygen species (ROS). Among three synthesized complexes, [IrL] has shown outstanding potency (IC50 = 3.70 in the absence of GSH and IC50 = 3.90 in the presence of GSH). Also, the complex, [IrL] is capable of interacting with DNA with the highest binding constant (Kb = 0.023 × 106 M-1) along with higher protein binding affinity (KBSA = 0.0321 × 106 M-1). Here, it has been unveiled that all the complexes have been entitled to involve DNA covalent interaction through the available sites of both adenine and guanine bases.
Collapse
Affiliation(s)
- Rishav Das
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Priyankar Paira
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| |
Collapse
|
6
|
Peng X, Tang Q, Zhu H, Bai L, Zhao H, Chen Y. Study on antitumor activity of three ruthenium arene complexes in vitro. J Inorg Biochem 2023; 247:112310. [PMID: 37441921 DOI: 10.1016/j.jinorgbio.2023.112310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Three ruthenium arene complexes, namely {[(η6-p-cymene)Ru(Cl)]2(dpb)}(PF6)2 (1), [(η6-p-cymene)Ru(dpb)Cl](PF6) (2) and [(η6-p-cymene) Ru(dpb)py](PF6) (3) (dpb = 2,3-bis(2-pyridyl)benzo-quinoxaline, py = pyridine), were synthesized and their antitumor properties were introduced. Complexes 1-3 were characterized by 1H NMR, MS, and elemental analysis. As a binuclear ruthenium structure, the absorption of metal ligand electron transfer (MLCT) of 1 extended to 700 nm. Complex 1 was significantly hydrolyzed under dark conditions. The cytotoxicity in vitro study showed that complexes 1 and 2 are more toxic to human lung cancer cells (A549) and human cervial cancer cells (Hela) than cisplatin. Moreover, there was almost no cross-resistance between complex 1-2 and cisplatin. Under the irradiation at 478 nm, complexes 1-3 all produced singlet oxygen (1O2), and the 1O2 quantum yield of complex 1 in PBS is the highest among complexes 1-3. Complex 1 also produced 1O2 under 600 nm light irradiation. DNA gel electrophoresis showed that 1 caused the photocleavage of plasmid DNA. The hydrolysis rate of complex 1 was accelerated under light (λ > 600 nm). And the phototoxicity of complex 1 to Hela cells under light (λ > 600 nm) was much greater than its dark toxicity, which may be due to its generation of 1O2 and the promotion of its hydrolysis under long-wave light irradiation.
Collapse
Affiliation(s)
- Xiaolong Peng
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Qiang Tang
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Huiyun Zhu
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Lijuan Bai
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Hua Zhao
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yongjie Chen
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
7
|
Das U, Paira P. Synthesis, characterization, photophysical and electrochemical properties, and biomolecular interaction of 2,2'-biquinoline based phototoxic Ru(II)/Ir(II) complexes. Dalton Trans 2023; 52:12608-12617. [PMID: 37314097 DOI: 10.1039/d3dt01348k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The phototoxic nature of drugs has been seen to convey immense importance in photo activated chemotherapy (PACT) for the selective treatment of disease. Rationally, in order to eradicate the vehemence of cancer in a living body, the design of phototoxic molecules has been of growing interest in research to establish a selective strategy for cancer therapy. Therefore, the present work portrays the synthesis of a phototoxic anticancer agent by incorporating ruthenium(II) and iridium(III) metals into a biologically active 2,2'-biquinoline moiety, BQ. The complexes, RuBQ and IrBQ, have been revealed as effective anticancer agents with remarkable toxicity in the presence of light compared to the dark towards HeLa and MCF-7 cancer cell lines due to the production of a profuse amount of singlet oxygen (1O2) upon irradiation by visible light (400-700 nm). Complex IrBQ exhibited the best toxicity (IC50 = 8.75 μM in MCF-7 and 7.23 μM in HeLa) in comparison to the RuBQ complex under visible light. RuBQ and IrBQ displayed considerable quantum yields (Φf) along with a good lipophilic property, indicating the cellular imaging capability of both complexes upon significant accumulation in cancer cells. Also, the complexes have shown significant binding propensity with biomolecules, viz. deoxyribonucleic acid (DNA) as well as serum albumin (BSA, HSA).
Collapse
Affiliation(s)
- Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014, Tamilnadu, India.
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014, Tamilnadu, India.
| |
Collapse
|