1
|
Hong Z, Zhang L, Liang H, Huang FP. Recent advances in discrete Cu complexes for enhanced chemodynamic therapy. Dalton Trans 2024; 53:19075-19080. [PMID: 39552523 DOI: 10.1039/d4dt02380c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Since the concept of metal ion stimulation-mediated chemodynamic therapy was proposed by Bu and Shi's group in 2016, increasing attention has been directed toward the fabrication of efficient, safe and stable Fenton/Fenton-like catalysts to advance clinical translation. In particular, metal-based complexes with inherent metal catalytic centers have received extensive attention as potential alternatives/complements for traditional CDT agents. Among them, copper-based complexes, which possess excellent redox properties, extensive adaptability and abundant availability, enable the efficient generation of ROS through Fenton-like reactions in CDT, thereby causing oxidative damage to lipids, proteins, and DNA in cancer cells. In this brief review, we summarize the recent progress on various discrete copper-based metal complexes aimed at enhancing the therapeutic efficacy of CDT as well as their application in combination therapy. We hope that this review will attract active attention toward metal complexes in advancing more accurate and efficient chemodynamic therapy and encourage further in-depth research to facilitate clinical translation.
Collapse
Affiliation(s)
- Zhaoguo Hong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, 541004, China
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Liangliang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, 541004, China
| | - Fu-Ping Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
2
|
Zhou YC, Zhao TK, Tao SM, Wang P, Guan YC, Yang KP, Chen SQ, Pu XY. Recent Progress in Ferroptosis Induced Tumor Cell Death by Anti-tumor Metallic complexes. Chem Asian J 2024; 19:e202301020. [PMID: 38149729 DOI: 10.1002/asia.202301020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 12/28/2023]
Abstract
Metal complexes represented by platinum complexes play a very important role in cancer treatment due to their diverse chemical structures and anti-tumor activities. Recently, ferroptosis has emerged as a newly occurring cell death form in the anti-tumor process. It has been reported that metal complexes could inhibit the proliferation and metastasis of tumors and combat chemotherapy resistance by targeting ferroptosis. In this review, we briefly describe ferroptosis as a fundamental process for tumor suppression and triggering anti-tumor immune responses. We summarize recent developments on metal complexes that induce ferroptosis. Finally, we outline the prospects for the application of metal complexes to the treatment of tumors based on ferroptosis and the associated problems that need to be solved, and discussed other potential research directions of metal complexes.
Collapse
Affiliation(s)
- Yong-Chang Zhou
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Tian-Kun Zhao
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Si-Man Tao
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Peng Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yi-Chen Guan
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Ke-Pei Yang
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Sheng-Qiang Chen
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Xiu-Ying Pu
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| |
Collapse
|
3
|
Ren Q, Zhang X, Sheng Y, Yu N, Li M, Chen Z. Phytic acid-Cu 2+ framework/Cu 2-xS nanocomposites with heat-shock protein down-modulation ability for enhanced multimodal combination therapy. J Colloid Interface Sci 2023; 652:2116-2126. [PMID: 37703681 DOI: 10.1016/j.jcis.2023.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Mild-temperature photothermal therapy (mPTT) has shown some advantages over traditional photothermal therapy, such as reducing the damage to surrounding healthy tissues and minimizing side effects. Nevertheless, cancer cells can easily repair damage caused by mild hyperthermia due to heat shock proteins (HSPs). Thus, it is imperative to maximize the mPTT efficiency by down-regulating HSPs overexpression and combining other cancer treatments. Herein, we report the synthesis of phytic acid (PA)-Cu2+ framework/copper sulfide (Cu2-xS) nanocomposites (abbreviated as PA-Cu/Cu2-xS NPs) as the novel therapeutic platform that can down-regulate HSPs overexpression for enhanced multimodal mPTT/chemodynamic therapy (CDT)/chemotherapy. PA-Cu/Cu2-xS NPs were prepared through self-assembly and in-situ vulcanization strategy, resulting in irregular-shaped particles with an approximate size of 100 nm. PA-Cu/Cu2-xS NPs display a plasmon effect from Cu2-xS, which enhances near-infrared (NIR) absorption and possesses excellent photothermal conversion efficiency (41.7%). Moreover, PA-Cu/Cu2-xS NPs exhibit Fenton-like reaction activity resulting from the Cu ions for CDT, and the reaction activity can be further improved 1.3 times due to mild hyperthermia during mPTT. Furthermore, the generated hydroxyl radical (•OH) can effectively decrease HSPs level to enhance mPTT. PA-Cu/Cu2-xS NPs can also serve as a drug delivery system, and they are capable of loading doxorubicin (DOX) with a loading ability (20.7%). Combining mPTT/CDT/chemotherapy exhibits significant inhibition of tumor growth. This approach can serve as a basis for designing more exquisite platforms that combine mPTT with other therapies to achieve more effective cancer treatment.
Collapse
Affiliation(s)
- Qian Ren
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaojing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yangyi Sheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Maoquan Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhigang Chen
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
4
|
Faizullin BA, Dayanova IR, Kurenkov AV, Gubaidullin AT, Saifina AF, Nizameev IR, Kholin KV, Khrizanforov MN, Sirazieva AR, Litvinov IA, Voloshina AD, Lyubina AP, Sibgatullina GV, Samigullin DV, Musina EI, Strelnik ID, Karasik AA, Mustafina AR. ROS-producing nanomaterial engineered from Cu(I) complexes with P 2N 2-ligands for cancer cells treating. DISCOVER NANO 2023; 18:133. [PMID: 37903946 PMCID: PMC10616039 DOI: 10.1186/s11671-023-03912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023]
Abstract
The work presents core-shell nanoparticles (NPs) built from the novel Cu(I) complexes with cyclic P2N2-ligands (1,5-diaza-3,7-diphosphacyclooctanes) that can visualize their entry into cancer and normal cells using a luminescent signal and treat cells by self-enhancing generation of reactive oxygen species (ROS). Variation of P- and N-substituents in the series of P2N2-ligands allows structure optimization of the Cu(I) complexes for the formation of the luminescent NPs with high chemical stability. The non-covalent modification of the NPs with triblock copolymer F-127 provides their high colloidal stability, followed by efficient cell internalization of the NPs visualized by their blue (⁓450 nm) luminescence. The cytotoxic effects of the NPs toward the normal and some of cancer cells are significantly lower than those of the corresponding molecular complexes, which correlates with the chemical stability of the NPs in the solutions. The ability of the NPs to self-enhanced and H2O2-induced ROS generation is demonstrated in solutions and intracellular space by means of the standard electron spin resonance (ESR) and fluorescence techniques correspondingly. The anticancer specificity of the NPs toward HuTu 80 cancer cells and the apoptotic cell death pathway correlate with the intracellular level of ROS, which agrees well with the self-enhancing ROS generation of the NPs. The enhanced level of ROS revealed in HuTu 80 cells incubated with the NPs can be associated with the significant level of their mitochondrial localization.
Collapse
Affiliation(s)
- Bulat A Faizullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088.
| | - Irina R Dayanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Alexey V Kurenkov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Aidar T Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Alina F Saifina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Irek R Nizameev
- Department of Physics, Kazan National Research Technological University, 68 Karl Marx Str., Kazan, Russia, 420015
| | - Kirill V Kholin
- Department of Nanotechnology in Electronics, Kazan National Research Technical University Named After A.N. Tupolev-KAI, 10 K. Marx Street, Kazan, Russia, 420111
| | - Mikhail N Khrizanforov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, 1/29 Lobachevski Str., Kazan, Russia, 420008
| | - Aisylu R Sirazieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Igor A Litvinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Guzel V Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski Str., Kazan, Russia, 420111
| | - Dmitry V Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski Str., Kazan, Russia, 420111
- Institute for Radio-Electronics and Telecommunications, Kazan National Research Technical University Named After A.N. Tupolev-KAI, 10 K. Marx Street, Kazan, Russia, 420111
| | - Elvira I Musina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Igor D Strelnik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, 1/29 Lobachevski Str., Kazan, Russia, 420008
| | - Andrey A Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Asiya R Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| |
Collapse
|