1
|
Xu Y, Du Y, Chen H, Chen J, Ding T, Sun D, Kim DH, Lin Z, Zhou X. Recent advances in rational design for high-performance potassium-ion batteries. Chem Soc Rev 2024; 53:7202-7298. [PMID: 38855863 DOI: 10.1039/d3cs00601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The growing global energy demand necessitates the development of renewable energy solutions to mitigate greenhouse gas emissions and air pollution. To efficiently utilize renewable yet intermittent energy sources such as solar and wind power, there is a critical need for large-scale energy storage systems (EES) with high electrochemical performance. While lithium-ion batteries (LIBs) have been successfully used for EES, the surging demand and price, coupled with limited supply of crucial metals like lithium and cobalt, raised concerns about future sustainability. In this context, potassium-ion batteries (PIBs) have emerged as promising alternatives to commercial LIBs. Leveraging the low cost of potassium resources, abundant natural reserves, and the similar chemical properties of lithium and potassium, PIBs exhibit excellent potassium ion transport kinetics in electrolytes. This review starts from the fundamental principles and structural regulation of PIBs, offering a comprehensive overview of their current research status. It covers cathode materials, anode materials, electrolytes, binders, and separators, combining insights from full battery performance, degradation mechanisms, in situ/ex situ characterization, and theoretical calculations. We anticipate that this review will inspire greater interest in the development of high-efficiency PIBs and pave the way for their future commercial applications.
Collapse
Affiliation(s)
- Yifan Xu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Yichen Du
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Han Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Jing Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Tangjing Ding
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Dongmei Sun
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Dong Ha Kim
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Xiaosi Zhou
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
2
|
Lu Y, Han H, Yang Z, Ni Y, Meng Z, Zhang Q, Wu H, Xie W, Yan Z, Chen J. High-capacity dilithium hydroquinone cathode material for lithium-ion batteries. Natl Sci Rev 2024; 11:nwae146. [PMID: 38741713 PMCID: PMC11089817 DOI: 10.1093/nsr/nwae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/16/2024] Open
Abstract
Lithiated organic cathode materials show great promise for practical applications in lithium-ion batteries owing to their Li-reservoir characteristics. However, the reported lithiated organic cathode materials still suffer from strict synthesis conditions and low capacity. Here we report a thermal intermolecular rearrangement method without organic solvents to prepare dilithium hydroquinone (Li2Q), which delivers a high capacity of 323 mAh g-1 with an average discharge voltage of 2.8 V. The reversible conversion between orthorhombic Li2Q and monoclinic benzoquinone during charge/discharge processes is revealed by in situ X-ray diffraction. Theoretical calculations show that the unique Li-O channels in Li2Q are beneficial for Li+ ion diffusion. In situ ultraviolet-visible spectra demonstrate that the dissolution issue of Li2Q electrodes during charge/discharge processes can be handled by separator modification, resulting in enhanced cycling stability. This work sheds light on the synthesis and battery application of high-capacity lithiated organic cathode materials.
Collapse
Affiliation(s)
- Yong Lu
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haoqin Han
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhuo Yang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Youxuan Ni
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhicheng Meng
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qiu Zhang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Wu
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Xie
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenhua Yan
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun Chen
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Dong H, Kang N, Li L, Li L, Yu Y, Chou S. Versatile Nitrogen-Centered Organic Redox-Active Materials for Alkali Metal-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311401. [PMID: 38181392 DOI: 10.1002/adma.202311401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/16/2023] [Indexed: 01/07/2024]
Abstract
Versatile nitrogen-centered organic redox-active molecules have gained significant attention in alkali metal-ion batteries (AMIBs) due to their low cost, low toxicity, and ease of preparation. Specially, their multiple reaction categories (anion/cation insertion types of reaction) and higher operating voltage, when compared to traditional conjugated carbonyl materials, underscore their promising prospects. However, the high solubility of nitrogen-centered redox active materials in organic electrolyte and their low electronic conductivity contribute to inferior cycling performance, sluggish reaction kinetics, and limited rate capability. This review provides a detailed overview of nitrogen-centered redox-active materials, encompassing their redox chemistry, solutions to overcome shortcomings, characterization of charge storage mechanisms, and recent progress. Additionally, prospects and directions are proposed for future investigations. It is anticipated that this review will stimulate further exploration of underlying mechanisms and interface chemistry through in situ characterization techniques, thereby promoting the practical application of nitrogen-centered redox-active materials in AMIBs.
Collapse
Affiliation(s)
- Huanhuan Dong
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang, 325035, China
| | - Ning Kang
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang, 325035, China
| | - Lin Li
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang, 325035, China
| | - Li Li
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang, 325035, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
4
|
Cui S, Miao W, Peng H, Ma G, Lei Z, Zhu L, Xu Y. Covalent Organic Frameworks as Electrode Materials for Alkali Metal-ion Batteries. Chemistry 2024; 30:e202303320. [PMID: 38126628 DOI: 10.1002/chem.202303320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Covalent organic frameworks (COFs) are a class of porous crystalline polymeric materials constructed by linking organic small molecules through covalent bonds. COFs have the advantages of strong covalent bond network, adjustable pore structure, large specific surface area and excellent thermal stability, and have broad application prospects in various fields. Based on these advantages, rational COFs design strategies such as the introduction of active sites, construction of conjugated structures, and carbon material composite, etc. can effectively improve the conductivity and stability of the electrode materials in the field of batteries. This paper introduces the latest research results of high-performance COFs electrode materials in alkali metal-ion batteries (LIBs, SIBs, PIBs and LSBs) and other advanced batteries. The current challenges and future design directions of COFs-based electrode are discussed. It provides useful insights for the design of novel COFs structures and the development of high-performance alkali metal-ion batteries.
Collapse
Affiliation(s)
- Shuzhen Cui
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Polymer Materials Ministry of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Wenxing Miao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Polymer Materials Ministry of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Hui Peng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Polymer Materials Ministry of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Guofu Ma
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Polymer Materials Ministry of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Polymer Materials Ministry of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Lei Zhu
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, 432000, Hubei Province, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
5
|
Wang J, Jia H, Liu Z, Yu J, Cheng L, Wang HG, Cui F, Zhu G. Anchoring π-d Conjugated Metal-Organic Frameworks with Dual-Active Centers on Carbon Nanotubes for Advanced Potassium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305605. [PMID: 37566706 DOI: 10.1002/adma.202305605] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Potassium-ion batteries (PIBs) are gradually gaining attention owing to their natural abundance, excellent security, and high energy density. However, developing excellent organic cathode materials for PIBs to overcome the poor cycling stability and slow kinetics caused by the large radii of K+ ions is challenging. This study demonstrates for the first time the application of a hexaazanonaphthalene (HATN)-based 2D π-d conjugated metal-organic framework (2D c-MOF) with dual-active centers (Cu-HATNH) and integrates Cu-HATNH with carbon nanotubes (Cu-HATNH@CNT) as the cathode material for PIBs. Owing to this systematic module integration and more exposed active sites with high utilization, Cu-HATNH@CNT exhibits a high initial capacity (317.5 mA h g-1 at 0.1 A g-1 ), excellent long-term cycling stability (capacity retention of 96.8% at 5 A g-1 after 2200 cycles), and outstanding rate capacity (147.1 mA h g-1 at 10 A g-1 ). The reaction mechanism and performance are determined by combining experimental characterization and density functional theory calculations. This contribution provides new opportunities for designing high-performance 2D c-MOF cathodes with multiple active sites for PIBs.
Collapse
Affiliation(s)
- Junhao Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hongfeng Jia
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Zhaoli Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Jie Yu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Linqi Cheng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Heng-Guo Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Fengchao Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
6
|
Guo X, Apostol P, Zhou X, Wang J, Lin X, Rambabu D, Du M, Er S, Vlad A. Towards the 4 V-class n-type organic lithium-ion positive electrode materials: the case of conjugated triflimides and cyanamides. ENERGY & ENVIRONMENTAL SCIENCE 2024; 17:173-182. [PMID: 38173560 PMCID: PMC10759797 DOI: 10.1039/d3ee02897f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 01/05/2024]
Abstract
Organic electrode materials have garnered a great deal of interest owing to their sustainability, cost-efficiency, and design flexibility metrics. Despite numerous endeavors to fine-tune their redox potential, the pool of organic positive electrode materials with a redox potential above 3 V versus Li+/Li0, and maintaining air stability in the Li-reservoir configuration remains limited. This study expands the chemical landscape of organic Li-ion positive electrode chemistries towards the 4 V-class through molecular design based on electron density depletion within the redox center via the mesomeric effect of electron-withdrawing groups (EWGs). This results in the development of novel families of conjugated triflimides and cyanamides as high-voltage electrode materials for organic lithium-ion batteries. These are found to exhibit ambient air stability and demonstrate reversible electrochemistry with redox potentials spanning the range of 3.1 V to 3.8 V (versus Li+/Li0), marking the highest reported values so far within the realm of n-type organic chemistries. Through comprehensive structural analysis and extensive electrochemical studies, we elucidate the relationship between the molecular structure and the ability to fine-tune the redox potential. These findings offer promising opportunities to customize the redox properties of organic electrodes, bridging the gap with their inorganic counterparts for application in sustainable and eco-friendly electrochemical energy storage devices.
Collapse
Affiliation(s)
- Xiaolong Guo
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain Louvain-la-Neuve B-1348 Belgium
| | - Petru Apostol
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain Louvain-la-Neuve B-1348 Belgium
| | - Xuan Zhou
- DIFFER - Dutch Institute for Fundamental Energy Research De Zaale 20 5612 AJ Eindhoven The Netherlands
| | - Jiande Wang
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain Louvain-la-Neuve B-1348 Belgium
| | - Xiaodong Lin
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain Louvain-la-Neuve B-1348 Belgium
| | - Darsi Rambabu
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain Louvain-la-Neuve B-1348 Belgium
| | - Mengyuan Du
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain Louvain-la-Neuve B-1348 Belgium
| | - Süleyman Er
- DIFFER - Dutch Institute for Fundamental Energy Research De Zaale 20 5612 AJ Eindhoven The Netherlands
| | - Alexandru Vlad
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain Louvain-la-Neuve B-1348 Belgium
| |
Collapse
|
7
|
Zhang Y, Wang J, Apostol P, Rambabu D, Eddine Lakraychi A, Guo X, Zhang X, Lin X, Pal S, Rao Bakuru V, Chen X, Vlad A. Bimetallic Anionic Organic Frameworks with Solid-State Cation Conduction for Charge Storage Applications. Angew Chem Int Ed Engl 2023; 62:e202310033. [PMID: 37651171 DOI: 10.1002/anie.202310033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/01/2023]
Abstract
A new phosphonate-based anionic bimetallic organic framework, with the general formula of A4 -Zn-DOBDP (wherein A is Li+ or Na+ , and DOBDP6- is the 2,5-dioxido-1,4-benzenediphosphate ligand) is prepared and characterized for energy storage applications. With four alkali cations per formula unit, the A4 -Zn-DOBDP MOF is found to be the first example of non-solvated cation conducting MOF with measured conductivities of 5.4×10-8 S cm-1 and 3.4×10-8 S cm-1 for Li4 - and Na4 - phases, indicating phase and composition effects of Li+ and Na+ shuttling through the channels. Three orders of magnitude increase in ionic conductivity is further attained upon solvation with propylene carbonate, placing this system among the best MOF ionic conductors at room temperature. As positive electrode material, Li4 -Zn-DOBDP delivers a specific capacity of 140 mAh g-1 at a high average discharge potential of 3.2 V (vs. Li+ /Li) with 90 % of capacity retention over 100 cycles. The significance of this research extends from the development of a new family of electroactive phosphonate-based MOFs with inherent ionic conductivity and reversible cation storage, to providing elementary insights into the development of highly sought yet still evasive MOFs with mixed-ion and electron conduction for energy storage applications.
Collapse
Affiliation(s)
- Yan Zhang
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, Hunan, P. R. China
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Jiande Wang
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Petru Apostol
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Darsi Rambabu
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Alae Eddine Lakraychi
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Xiaolong Guo
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Xiaozhe Zhang
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Xiaodong Lin
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Shubhadeep Pal
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Vasudeva Rao Bakuru
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Xiaohua Chen
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, Hunan, P. R. China
| | - Alexandru Vlad
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
8
|
Zhang M, Wang L, Xu H, Song Y, He X. Polyimides as Promising Materials for Lithium-Ion Batteries: A Review. NANO-MICRO LETTERS 2023; 15:135. [PMID: 37221393 PMCID: PMC10205965 DOI: 10.1007/s40820-023-01104-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023]
Abstract
Lithium-ion batteries (LIBs) have helped revolutionize the modern world and are now advancing the alternative energy field. Several technical challenges are associated with LIBs, such as increasing their energy density, improving their safety, and prolonging their lifespan. Pressed by these issues, researchers are striving to find effective solutions and new materials for next-generation LIBs. Polymers play a more and more important role in satisfying the ever-increasing requirements for LIBs. Polyimides (PIs), a special functional polymer, possess unparalleled advantages, such as excellent mechanical strength, extremely high thermal stability, and excellent chemical inertness; they are a promising material for LIBs. Herein, we discuss the current applications of PIs in LIBs, including coatings, separators, binders, solid-state polymer electrolytes, and active storage materials, to improve high-voltage performance, safety, cyclability, flexibility, and sustainability. Existing technical challenges are described, and strategies for solving current issues are proposed. Finally, potential directions for implementing PIs in LIBs are outlined.
Collapse
Affiliation(s)
- Mengyun Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Li Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Youzhi Song
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
9
|
Wang J, Apostol P, Rambabu D, Guo X, Liu X, Robeyns K, Du M, Zhang Y, Pal S, Markowski R, Lucaccioni F, Lakraychi AE, Morari C, Gohy JF, Gupta D, Vlad A. Revealing the reversible solid-state electrochemistry of lithium-containing conjugated oximates for organic batteries. SCIENCE ADVANCES 2023; 9:eadg6079. [PMID: 37115926 PMCID: PMC10146882 DOI: 10.1126/sciadv.adg6079] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In the rising advent of organic Li-ion positive electrode materials with increased energy content, chemistries with high redox potential and intrinsic oxidation stability remain a challenge. Here, we report the solid-phase reversible electrochemistry of the oximate organic redox functionality. The disclosed oximate chemistries, including cyclic, acyclic, aliphatic, and tetra-functional stereotypes, uncover the complex interplay between the molecular structure and the electroactivity. Among the exotic features, the most appealing one is the reversible electrochemical polymerization accompanying the charge storage process in solid phase, through intermolecular azodioxy bond coupling. The best-performing oximate delivers a high reversible capacity of 350 mAh g-1 at an average potential of 3.0 versus Li+/Li0, attaining 1 kWh kg-1 specific energy content at the material level metric. This work ascertains a strong link between electrochemistry, organic chemistry, and battery science by emphasizing on how different phases, mechanisms, and performances can be accessed using a single chemical functionality.
Collapse
Affiliation(s)
- Jiande Wang
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Petru Apostol
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Darsi Rambabu
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Xiaolong Guo
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Xuelian Liu
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Mengyuan Du
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Yan Zhang
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Shubhadeep Pal
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Robert Markowski
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Fabio Lucaccioni
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Alae Eddine Lakraychi
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Cristian Morari
- Institutul Național de Cercetare-Dezvoltare pentru Tehnologii Izotopice și Moleculare Cluj-Napoca, Cluj-Napoca, România
| | - Jean-François Gohy
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Deepak Gupta
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
- Corresponding author. (D.G.); (A.V.)
| | - Alexandru Vlad
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
- Corresponding author. (D.G.); (A.V.)
| |
Collapse
|
10
|
Zhang G, Wu L, Tongsh C, Qu Z, Wu S, Xie B, Huo W, Du Q, Wang H, An L, Wang N, Xuan J, Chen W, Xi F, Wang Z, Jiao K. Structure Design for Ultrahigh Power Density Proton Exchange Membrane Fuel Cell. SMALL METHODS 2023; 7:e2201537. [PMID: 36609816 DOI: 10.1002/smtd.202201537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Next-generation ultrahigh power density proton exchange membrane fuel cells rely not only on high-performance membrane electrode assembly (MEA) but also on an optimal cell structure. To this end, this work comprehensively investigates the cell performance under various structures, and it is revealed that there is unexploited performance improvement in structure design because its positive effect enhancing gas supply is often inhibited by worse proton/electron conduction. Utilizing fine channel/rib or the porous flow field is feasible to eliminate the gas diffusion layer (GDL) and hence increase the power density significantly due to the decrease of cell thickness and gas/electron transfer resistances. The cell structure combining fine channel/rib, GDL elimination and double-cell structure is believed to increase the power density from 4.4 to 6.52 kW L-1 with the existing MEA, showing nearly equal importance with the new MEA development in achieving the target of 9.0 kW L-1 .
Collapse
Affiliation(s)
- Guobin Zhang
- State Key Laboratory of Engines, Tianjin University, Tianjin, 300350, China
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lizhen Wu
- State Key Laboratory of Engines, Tianjin University, Tianjin, 300350, China
| | - Chasen Tongsh
- State Key Laboratory of Engines, Tianjin University, Tianjin, 300350, China
| | - Zhiguo Qu
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Siyuan Wu
- Department of Mechanical and Aerospace Engineering, University of California, Davis, CA, 95616, USA
| | - Biao Xie
- State Key Laboratory of Engines, Tianjin University, Tianjin, 300350, China
| | - Wenming Huo
- State Key Laboratory of Engines, Tianjin University, Tianjin, 300350, China
| | - Qing Du
- State Key Laboratory of Engines, Tianjin University, Tianjin, 300350, China
| | - Huizhi Wang
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Liang An
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Ning Wang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jin Xuan
- Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| | | | - Fuqiang Xi
- Weichai Power Co. Ltd. , Weifang, 261016, China
| | - Zhixin Wang
- Weichai Power Co. Ltd. , Weifang, 261016, China
| | - Kui Jiao
- State Key Laboratory of Engines, Tianjin University, Tianjin, 300350, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
11
|
Lu Y, Zhang Q, Li F, Chen J. Emerging Lithiated Organic Cathode Materials for Lithium-Ion Full Batteries. Angew Chem Int Ed Engl 2023; 62:e202216047. [PMID: 36445787 DOI: 10.1002/anie.202216047] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Organic electrode materials have application potential in lithium batteries owing to their high capacity, abundant resources, and structural designability. However, most reported organic cathodes are at oxidized states (namely unlithiated compounds) and thus need to couple with Li-rich anodes. In contrast, lithiated organic cathode materials could act as a Li reservoir and match with Li-free anodes such as graphite, showing great promise for practical full-battery applications. Here we summarize the synthesis, stability, and battery applications of lithiated organic cathode materials, including synthetic methods, stability against O2 and H2 O in air, and strategies to improve comprehensive electrochemical performance. Future research should be focused on new redox chemistries and the construction of full batteries with lithiated organic cathodes and commercial anodes under practical conditions. This Minireview will encourage more efforts on lithiated organic cathode materials and finally promote their commercialization.
Collapse
Affiliation(s)
- Yong Lu
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiu Zhang
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fujun Li
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun Chen
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
12
|
Morari C, Buimaga-Iarinca L, Turcu R. On the contribution of phonons to electrochemical potential of Li-ion metal-organic frameworks. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|