1
|
Shen L, Kang J, Wang J, Shao S, Zhou H, Yu X, Huang M, Zeng W. Dissecting the mechanism of synergistic interactions between Aspergillus fumigatus and the microalgae Synechocystis sp. PCC6803 under Cd(II) exposure: insights from untargeted metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135354. [PMID: 39126852 DOI: 10.1016/j.jhazmat.2024.135354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Co-culturing fungi and microalgae may effectively remediate wastewater containing Cd and harvest microalgae. Nevertheless, a detailed study of the mechanisms underlying the synergistic interactions between fungi and microalgae under Cd(II) exposure is lacking. In this study, Cd(II) exposure resulted in a significant enhancement of antioxidants, such as glutathione (GSH), malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide dismutase (SOD) compared to the control group, suggesting that the cellular antioxidant defense response was activated. Extracellular proteins and extracellular polysaccharides of the symbiotic system were increased by 60.61 % and ,24.29 %, respectively, after Cd(II) exposure for 72 h. The adsorption behavior of Cd(II) was investigated using three-dimensional fluorescence excitation-emission matrix (3D-EEM), fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). Metabolomics results showed that the TCA cycle provided effective material and energy supply for the symbiotic system to resist the toxicity of Cd(II); Proline, histidine, and glutamine strengthened the synergistic adsorption capacity of the fungus and microalgae. Overall, the theoretical foundation for a deep comprehension of the beneficial interactions between fungi and microalgae under Cd(II) exposure and the role of the fungal-algal symbiotic system in the management of heavy metal pollution is provided by this combined physiological and metabolomic investigation.
Collapse
Affiliation(s)
- Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Jue Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Shiyu Shao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Hao Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Xinyi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Min Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China.
| |
Collapse
|
2
|
Santos JP, Li W, Keller AA, Slaveykova VI. Mercury species induce metabolic reprogramming in freshwater diatom Cyclotella meneghiniana. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133245. [PMID: 38150761 DOI: 10.1016/j.jhazmat.2023.133245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
Mercury is a hazardous pollutant of global concern. While advances have been made in identifying the detrimental effects caused by Hg species in phytoplankton, knowledge gaps remain regarding the metabolomic perturbations induced by inorganic mercury (Hg(II)) and monomethylmercury (MeHg) in these organisms. Diatoms represent a major phytoplankton group essential in various global biogeochemical cycles. The current study combined targeted metabolomics, bioaccumulation, and physiological response assays to investigate metabolic perturbations in diatom Cyclotella meneghiniana exposed for 2 h to nanomolar concentrations of Hg(II) and MeHg. Our findings highlight that such exposures induce reprogramming of the metabolism of amino acids, nucleotides, fatty acids, carboxylic acids and antioxidants. These alterations were primarily mercury-species dependent. MeHg exposure induced more pronounced reprogramming of the metabolism of diatoms than Hg(II), which led to less pronounced effects on ROS generation, membrane permeability and chlorophyll concentrations. Hg(II) treatments presented distinct physiological responses, with more robust metabolic perturbations at higher exposures. The present study provides first-time insights into the main metabolic alterations in diatom C. meneghiniana during short-term exposure to Hg species, deepening our understanding of the molecular basis of these perturbations.
Collapse
Affiliation(s)
- João P Santos
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland.
| | - Weiwei Li
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA 93106-5131, United States
| | - Arturo A Keller
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA 93106-5131, United States
| | - Vera I Slaveykova
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland.
| |
Collapse
|
3
|
Zhu L, Feng S, Li Y, Sun X, Sui Q, Chen B, Qu K, Xia B. Physiological and transcriptomic analysis reveals the toxic and protective mechanisms of marine microalga Chlorella pyrenoidosa in response to TiO 2 nanoparticles and UV-B radiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169174. [PMID: 38072255 DOI: 10.1016/j.scitotenv.2023.169174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Concerns have been raised regarding the adverse effects of nanoparticles (NPs) on marine organisms, as an increasing number of NPs inevitably enter the marine environment with the development of nanotechnology. Owing to the photocatalytic properties, TiO2 NPs' toxicity may be aggravated by enhanced UV-B resulting from stratospheric ozone depletion. However, the molecular mechanisms of phytoplankton in response to TiO2 NPs under UV-B remains poorly understood. In this study, we integrated whole transcriptome analysis with physiological data to provide understanding on the toxic and protective mechanisms of marine Chlorella pyrenoidosa in response to TiO2 NPs under UV-B. The results indicated that the changes in gene expression could be related to the growth inhibition and TiO2 NP internalization in C. pyrenoidosa, and several molecular mechanisms were identified as toxicity response to TiO2 NPs and UV-B. Differential expression of genes involved in glycerophospholipids metabolism indicated that cell membrane disruption allowed TiO2 NPs to enter the algal cell under UV-B exposure, although the up-regulation of genes involved in the general secretory dependent pathway and the ATP-binding cassette transporter family drove cellular secretion of extracellular polymeric substances, acting as a barrier that prevent TiO2 NP internalization. The absence of changes in gene expression related to the antioxidant system may be responsible for the severe oxidative stress observed in algal cells following exposure to TiO2 NPs under UV-B irradiation. Moreover, differential expression of genes involved in pathways such as photosynthesis and energy metabolism were up-regulated, including the light-harvesting, photosynthetic electron transport coupled to photophosphorylation, carbon fixation, glycolysis, pentose phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation, indicating that more energy and metabolites were supplied to cope with the toxicity of TiO2 NPs and UV-B. The obtained results provide valuable information on the molecular mechanisms of response of marine phytoplankton exposed to TiO2 NPs and UV-B.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Sulan Feng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; School of Marine Technology and Geomatics, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yu Li
- School of Marine Technology and Geomatics, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Xuemei Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Qi Sui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Bijuan Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Keming Qu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Bin Xia
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
4
|
Zhu H, Wang H, Zhang Y, Li Y. Biophotovoltaics: Recent advances and perspectives. Biotechnol Adv 2023; 64:108101. [PMID: 36681132 DOI: 10.1016/j.biotechadv.2023.108101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/02/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Biophotovoltaics (BPV) is a clean power generation technology that uses self-renewing photosynthetic microorganisms to capture solar energy and generate electrical current. Although the internal quantum efficiency of charge separation in photosynthetic microorganisms is very high, the inefficient electron transfer from photosystems to the extracellular electrodes hampered the electrical outputs of BPV systems. This review summarizes the approaches that have been taken to increase the electrical outputs of BPV systems in recent years. These mainly include redirecting intracellular electron transfer, broadening available photosynthetic microorganisms, reinforcing interfacial electron transfer and design high-performance devices with different configurations. Furthermore, three strategies developed to extract photosynthetic electrons were discussed. Among them, the strategy of using synthetic microbial consortia could circumvent the weak exoelectrogenic activity of photosynthetic microorganisms and the cytotoxicity of exogenous electron mediators, thus show great potential in enhancing the power output and prolonging the lifetime of BPV systems. Lastly, we prospected how to facilitate electron extraction and further improve the performance of BPV systems.
Collapse
Affiliation(s)
- Huawei Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Haowei Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|