1
|
Li Z, Li M, Fang X, Yu D, Hu X. Dietary Lactobacillus johnsonii-derived extracellular vesicles ameliorate acute colitis by regulating gut microbiota and maintaining intestinal barrier homeostasis. Food Funct 2024; 15:11757-11779. [PMID: 39545264 DOI: 10.1039/d4fo04194a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease with intricate pathogenesis, and clinical treatment is still not ideal. The imbalance of gut microbiota is associated with IBD progression. Various probiotics have been used as functional foods for the prevention and treatment of IBD, but the specific mechanism is still not fully understood. Lactobacillus johnsonii (L. johnsonii) is a potential anti-inflammatory bacterium, and compared to other probiotic Lactobacillus species, its colonization in the gut of colitis patients is significantly reduced. In this study, we first found that dietary L. johnsonii exerts strong anti-inflammatory and antioxidant effects in colitis mice, and this beneficial effect is directly related to its derived extracellular vesicles (LJ-EVs). Further experimental results indicate that LJ-EVs effectively prevented colitis symptoms and modulated gut microbiota and metabolic pathways. Meanwhile, we have studied for the first time the protective effect of LJ-EVs on the intestinal barrier from the perspective of reducing oxidative stress. We found that LJ-EVs can be directly taken up by intestinal epithelial cells and activate the Nrf2/HO-1 antioxidant signaling pathway, reducing endotoxin damage to cells and maintaining intestinal barrier homeostasis, which cascades to alleviate intestinal inflammation response. This study reveals the mechanism of L. johnsonii in treating colitis and provides a new approach for the development of oral LJ-EVs for the treatment of colitis.
Collapse
Affiliation(s)
- Zhiguo Li
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China.
| | - Mengyu Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xin Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China.
| |
Collapse
|
2
|
Wu Q, Lin H, Shen W, Cao W, Qin X, Gao J, Chen Z, Zheng H, Zhong S, Huang H. The Preventive Effect of Low-Molecular Weight Oyster Peptides on Lipopolysaccharide-Induced Acute Colitis in Mice by Modulating Intestinal Microbiota Communities. Foods 2024; 13:2391. [PMID: 39123582 PMCID: PMC11311859 DOI: 10.3390/foods13152391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Colitis causes inflammation, diarrhoea, fever, and other serious illnesses, posing a serious threat to human health and safety. Current medications for the treatment of colitis have serious side effects. Therefore, the new strategy of creating a defence barrier for immune function by adding anti-inflammatory foods to the daily diet is worth advocating for. Low-molecular weight oyster peptides (LOPs) are a natural food with anti-inflammatory activity extracted from oysters, so intervention with LOPs is likely to be an effective preventive solution. The aim of this study was to investigate the preventive effect of LOPs on lipopolysaccharide (LPS)-induced acute colitis inflammation in mice and its underlying mechanism. The results showed that LOPs not only inhibited the colonic histopathy in mice induced by LPS-induced inflammation but also reduced the inflammatory response in the blood. In addition, LOPs significantly increased the number of beneficial bacteria (Alistipes, Mucispirillum, and Oscillospira), decreased the number of harmful bacteria (Coprobacillus, Acinetobater) in the intestinal microbiota, and further affected the absorption and utilisation of short-chain fatty acids (SCFAs) in the intestinal tract. In conclusion, dietary supplementation with LOPs is a promising health-promoting dietary supplement and nutraceutical for the prevention of acute colitis by reducing the inflammatory response and modulating the intestinal microbial communities.
Collapse
Affiliation(s)
- Qihang Wu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Weiqiang Shen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Haoyang Huang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
| |
Collapse
|
3
|
Liu C, Qi X, Liu X, Sun Y, Mao K, Shen G, Ma Y, Li Q. Anti-inflammatory probiotics HF05 and HF06 synergistically alleviate ulcerative colitis and secondary liver injury. Food Funct 2024; 15:3765-3777. [PMID: 38506656 DOI: 10.1039/d3fo04419j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Given the limited efficacy and adverse effects associated with conventional drugs, probiotics are emerging as a promising therapeutic strategy for mitigating the chronic nature of ulcerative colitis (UC) and its consequential secondary liver injury (SLI). Limosilactobacillus fermentum HF06 and Lactiplatibacillus plantarum HF05 are strains we screened with excellent anti-inflammatory and probiotic properties in vitro. In this study, the intervention of HF06 and HF05 in combination (MIXL) was found to be more effective in alleviating intestinal inflammation and secondary liver injury in UC mice compared to supplementing with the two strains individually. Results demonstrated that MIXL effectively attenuated colon shortening and weight loss, downregulated the expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 mRNA in the intestines, mitigated SLI, and augmented the enzymatic activities of SOD, CAT, and GSH-Px in the liver. MIXL enhances the intestinal barrier in UC mice, regulates the structure and composition of the gut microbiota, promotes the abundance of Lactobacillus, and suppresses the abundance of bacteria associated with inflammation and liver injury, including Clostridium_Sensu_Stricto_1, Escherichia, Shigella, Enterococcus, Corynebacterium, Desulfovibrio, and norank_f__Oscillospiraceae. This study demonstrated the synergistic effect of HF06 and HF05, providing a reliable foundation for the alleviation of UC.
Collapse
Affiliation(s)
| | - Xiaofen Qi
- Harbin Institute of Technology, Harbin, China.
| | - Xiaolin Liu
- Harbin Institute of Technology, Harbin, China.
| | - Yue Sun
- Harbin Institute of Technology, Harbin, China.
| | - Kaidong Mao
- Jiangsu HOWYOU Biotechnology Co., Ltd, Qidong, China
| | - Guiqi Shen
- Jiangsu HOWYOU Biotechnology Co., Ltd, Qidong, China
| | - Ying Ma
- Harbin Institute of Technology, Harbin, China.
| | - Qingming Li
- New Hope Dairy Company Limited, China.
- Sichuan Engineering Laboratory for High-quality Dairy Product Preparation and Quality Control Technology, China
| |
Collapse
|
4
|
Tallei TE, Fatimawali, Adam AA, Ekatanti D, Celik I, Fatriani R, Nainu F, Kusuma WA, Rabaan AA, Idroes R. Molecular insights into the anti-inflammatory activity of fermented pineapple juice using multimodal computational studies. Arch Pharm (Weinheim) 2024; 357:e2300422. [PMID: 37861276 DOI: 10.1002/ardp.202300422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
Pineapple has been recognized for its potential to enhance health and well-being. This study aimed to gain molecular insights into the anti-inflammatory properties of fermented pineapple juice using multimodal computational studies. In this study, pineapple juice was fermented using Lactobacillus paracasei, and the solution underwent liquid chromatography-mass spectrometry analysis. Network pharmacology was applied to investigate compound interactions and targets. In silico methods assessed compound bioactivities. Protein-protein interactions, network topology, and enrichment analysis identified key compounds. Molecular docking explored compound-receptor interactions in inflammation regulation. Molecular dynamics simulations were conducted to confirm the stability of interactions between the identified crucial compounds and their respective receptors. The study revealed several compounds including short-chain fatty acids, peptides, dihydroxyeicosatrienoic acids, and glycerides that exhibited promising anti-inflammatory properties. Leucyl-leucyl-norleucine and Leu-Leu-Tyr exhibited robust and stable interactions with mitogen-activated protein kinase 14 and IκB kinase β, respectively, indicating their potential as promising therapeutic agents for inflammation modulation. This proposition is grounded in the pivotal involvement of these two proteins in inflammatory signaling pathways. These findings provide valuable insights into the anti-inflammatory potential of these compounds, serving as a foundation for further experimental validation and exploration. Future studies can build upon these results to advance the development of these compounds as effective anti-inflammatory agents.
Collapse
Grants
- 053/E5/PG.02.00.PL/2023 Directorate of Research, Technology, and Community Service of the Ministry of Education, Culture, Research, and Technology, Republic of Indonesia
- 189/UN12.13/LT/2023 Directorate of Research, Technology, and Community Service of the Ministry of Education, Culture, Research, and Technology, Republic of Indonesia
Collapse
Affiliation(s)
- Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Science, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Science, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Ahmad Akroman Adam
- Dentistry Study Program, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Dewi Ekatanti
- Pharmacy Study Program, Faculty of Mathematics and Natural Science, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Rizka Fatriani
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Wisnu Ananta Kusuma
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh, Aceh, Indonesia
| |
Collapse
|
5
|
Qi Y, Wang X, Zhang Y, Leng Y, Liu X, Wang X, Wu D, Wang J, Min W. Walnut-Derived Peptide Improves Cognitive Impairment in Colitis Mice Induced by Dextran Sodium Sulfate via the Microbiota-Gut-Brain Axis (MGBA). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19501-19515. [PMID: 38039336 DOI: 10.1021/acs.jafc.3c04807] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
In this study, we investigated the protective mechanism of walnut-derived peptide LPLLR (LP-5) against cognitive impairment induced in a dextran sodium sulfate (DSS)-induced colitis mouse model, with emphasis on the microbiota-gut-brain axis (MGBA). The results revealed that LP-5 could improve the learning ability and memory of mice with cognitive impairment and mitigate colitis symptoms, including weight loss, bloody stools, colon shortening, and histopathological changes. Additionally, LP-5 protected the integrity of the intestinal barrier by promoting the expression of tight junction proteins (TJs) while attenuating colonic inflammation by suppressing proinflammatory cytokine and epithelial cell apoptosis. Western blotting indicated that LP-5 treatment suppressed the inflammatory NF-κB/MLCK/MLC signaling pathway activity. Furthermore, LP-5 ameliorated hippocampal neuron damage and protected blood-brain barrier (BBB) integrity by downregulating microglia marker protein Iba-1, increasing TJ protein expression, and restoring the deterioration of synaptic proteins. Importantly, 16S rRNA sequencing results indicated that LP-5 reshaped the abundance of a wide range of gut microbiota at the phylum and genus levels, with increased Prevotella and Akkermansia associated with tryptophan (TRP), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA). These findings suggest that LP-5 could maintain intestinal barrier and BBB integrity, reverse gut dysbiosis, and improve learning and memory ability in colitis mice, providing novel insights into alterations of gut microbes in colitis and a potential new mechanism by which it causes cognitive impairment.
Collapse
Affiliation(s)
- Yuan Qi
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin, P. R. China
| | - Xuehang Wang
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin, P. R. China
- College of Food and Health, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, P. R. China
| | - Yaoxin Zhang
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin, P. R. China
| | - Yue Leng
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin, P. R. China
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin, P. R. China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin, P. R. China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin, P. R. China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin, P. R. China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin, P. R. China
- College of Food and Health, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, P. R. China
| |
Collapse
|
6
|
Wen Y, Tan L, Chen S, Wu N, Yao Y, Xu L, Xu M, Zhao Y, Tu Y. Egg yolk phosphatidylcholine alleviates DSS-induced colitis in BALB/c mice. Food Funct 2023; 14:9309-9323. [PMID: 37781872 DOI: 10.1039/d3fo02885b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Ulcerative colitis (UC) is a common inflammatory bowel disease, whose incidence is on the rise worldwide. The drugs commonly used for UC are often associated with a number of side effects. Therefore, the development of effective, food-borne substances for UC is in line with the current needs. Egg yolk phosphatidylcholine (EYPC) is one of the abundant lipids in egg yolk and possesses various biological activities. However, its protective effect against UC has not been clarified. In this study, the anti-UC activity of EYPC was investigated using a dextran sodium sulfate (DSS)-induced colitis model of BALB/c mice. The results showed that EYPC supplementation inhibited DSS-induced colon shortening, the spleen index and disease activity index increase and intestinal structural damage. EYPC could down-regulate the levels of TNF-α, IL-1β, IL-6 and MPO in the colon and restore the number of goblet cells and the level of tight junction (TJ) proteins. Besides, EYPC modulated the composition of the gut microbiota, lowered the relative abundance of the pathogenic bacterium Parabacteroides and upregulated the abundance of the beneficial bacteria Alistipes and Lachnospiraceae_NK4A136_group. These results evidenced that EYPC could attenuate DSS-induced colitis in mice and had the potential to prevent and treat UC.
Collapse
Affiliation(s)
- Yunpeng Wen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lixin Tan
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
7
|
Wang Y, Ye R, Fan L, Zhao X, Li L, Zheng H, Qiu Y, He X, Lu Y. A TNF-α blocking peptide that reduces NF-κB and MAPK activity for attenuating inflammation. Bioorg Med Chem 2023; 92:117420. [PMID: 37573821 DOI: 10.1016/j.bmc.2023.117420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023]
Abstract
Overexpression of tumor necrosis factor-α (TNF-α) is implicated in many inflammatory diseases, including septic shock, hepatitis, asthma, insulin resistance and autoimmune diseases, such as rheumatoid arthritis and Crohn's disease. The TNF-α signaling pathway is a valuable target, and anti-TNF-α drugs are successfully used to treat autoimmune and inflammatory diseases. Here, we study anti-inflammatory activity of an anti-TNF-α peptide (SN1-13, DEFHLELHLYQSW). In the cellular level assessment, SN1-13 inhibited TNF-α-induced cytotoxicity and blocks TNF-α-triggered signaling activities (IC50 = 15.40 μM). Moreover, the potential binding model between SN1-13 and TNF-α/TNFRs conducted through molecular docking revealed that SN1-13 could stunt TNF-α mediated signaling thought blocking TNF-α and its receptor TNFR1 and TNFR2. These results suggest that SN1-13 would be a potential lead peptide to treat TNF-α-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Yue Wang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130013, China
| | - Ruiwei Ye
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Liming Fan
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai 201299, China
| | - Xin Zhao
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072,China
| | - Linxue Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Hao Zheng
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yan Qiu
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai 201299, China.
| | - Xiuxia He
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130013, China.
| | - Yiming Lu
- School of Medicine, Shanghai University, Shanghai 200444, China; Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072,China.
| |
Collapse
|
8
|
Huang Y, Chen S, Yao Y, Wu N, Xu M, Du H, Yin Z, Zhao Y, Tu Y. Ovotransferrin Inhibits TNF-α Induced Inflammatory Response in Gastric Epithelial Cells via MAPK and NF-κB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12474-12486. [PMID: 37566483 DOI: 10.1021/acs.jafc.3c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Ovotransferrin (OVT) has been confirmed to have anti-inflammatory activity. However, its effect and mechanism on gastric inflammation are unclear. In this study, the effect and mechanism of the OVT on the tumor necrosis factor-α (TNF-α) induced inflammatory response in gastric epithelial cells (GES-1) were investigated. The enzyme linked immunosorbent assay (ELISA) was used to determine the levels of inflammation cytokines, followed by RNA sequencing to explore the potential pathways of its anti-inflammatory effect, and then it was validated by Western blotting and pathways inhibitors. Results showed that the OVT at concentrations of 50-400 μg/mL displayed nontoxicity against GES-1 cells. Additionally, 100 μg/mL of OVT obviously reduced the secretion of interleukin (IL)-8, IL-6, and TNF-α by 63.02% (630.09/1703.98), 35.53% (935.81/1451.43), and 36.19% (964.60/1511.63), respectively. The results of RNA sequencing exhibited that the OVT significantly influences the activation of mitogen-activated protein kinase (MAPK) and the nuclear factor kappa-light-chain enhancer of activated B cell (NF-κB) pathways, which was verified by the levels of p-IKK, p-IκB, p-P65, p-ERK, p-JNK, and p-P38 protein. IL-8 contents released by GES-1 cells after incubation with inhibitors of NF-κB and MAPK pathways further confirmed that OVT hindered activation of these two pathways. Collectively, these results suggested that OVT was a natural protein with the potential to treat gastric inflammation.
Collapse
Affiliation(s)
- Yan Huang
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|