1
|
Fang J, Jiang P, Wang X, Qi Z, He X, Chen L, Guo Y, Xu X, Liu R, Li D. Thinned young apple powder prevents obesity-induced neuronal apoptosis via improving mitochondrial function of cerebral cortex in mice. J Nutr Biochem 2024; 126:109588. [PMID: 38266689 DOI: 10.1016/j.jnutbio.2024.109588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Mitochondrial dysfunction is one of the triggers for obesity-induced neuron apoptosis. Thinned young apple is getting more attention on account of the extensive biological activities because of rich polyphenols and polysaccharides. However, the neuroprotective effect of thinned young apple powder (YAP) is still unclear. The aim of the present study was to investigate the preventive effect of YAP on obesity-induced neuronal apoptosis. C57BL/6J male mice were divided into 5 groups, control (CON), high fat diet (HFD), HFD + orlistat (ORL), HFD + low-dose young apple powder (LYAP) and HFD + high-dose young apple powder (HYAP) groups and intervened for 12 weeks. It was found that the YAP effectively reduced body weight gain. Importantly, the levels of pro-apoptosis protein were lower in LYAP and HYAP groups than the HFD group, such as Bak/Bcl2 and cleaved caspase3/caspase3. Pathway analysis based on untargeted metabolomics suggested that YAP alleviated obesity-induced neuronal apoptosis by three main metabolic pathway including arginine metabolism, citrate cycle (TCA cycle) and glutathione metabolism. Meanwhile, YAP improved the protein expression of mitochondrial respiratory chain complex, maintained the homeostasis of TCA cycle intermediates, protected the balance of mitochondrial dynamics and alleviated lipid accumulation. In addition, the levels of several antioxidants in cerebral cortex were higher in HYAP group than the HFD group like superoxide dismutase (SOD) and catalase (CAT). In summary, YAP supplementation suppressed neuronal apoptosis in the cerebral cortex of HFD-induced obesity mice by improving mitochondrial function and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Jiacheng Fang
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Peng Jiang
- Red Cross Maternity and Child Health Care Hospital of Jiaozhou, Qingdao, China
| | - Xincen Wang
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Zhongshi Qi
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Xin He
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public health and Emergency management, Southern University of Science and Technology, ShenZhen, China
| | - Lei Chen
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xiaoyun Xu
- Red Cross Maternity and Child Health Care Hospital of Jiaozhou, Qingdao, China
| | - Run Liu
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China.
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Ma Q, Gao J, Fan Q, Yang T, Zhao Z, Zhang S, Hu R, Cui L, Liang B, Xie X, Liu J, Long J. Thinned young apple polyphenols may prevent neuronal apoptosis by up-regulating 5-hydroxymethylcytosine in the cerebral cortex of high-fat diet-induced diabetic mice. Food Funct 2023; 14:3279-3289. [PMID: 36929718 DOI: 10.1039/d2fo03281c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Apple polyphenols exert neuroprotective effects by improving the mitochondrial tricarboxylic acid (TCA) cycle function, but the details of their mechanisms are still not fully understood. TCA cycle metabolites regulate the level of 5-hydroxymethylcytosine (5hmC) by affecting the ten-eleven translocation (TET) enzyme activity. Therefore, we hypothesized that thinned young apple polyphenols (TYAPs) inhibit neuronal apoptosis by up-regulating the level of 5hmC in the cerebral cortex of high-fat diet-induced diabetic mice. C57BL/6J mice were randomly divided into 5 groups (n = 10 each group): the control (CON) group, the high-fat diet (HFD, negative control) group, the lovastatin (LOV, positive drug control) group, the resveratrol (RES, positive polyphenol control) group and the TYAP group during an eight-week intervention. The presented results verified that in the HFD group, the level of 5hmC and the expression of TET2 in the cerebral cortex were significantly lower, and the ratio of (succinic acid + fumaric acid)/α-ketoglutarate and the neuronal apoptosis rate were significantly higher than those in the CON group. However, TYAP intervention effectively restored the level of 5hmC through up-regulating the expression and activity of TET2, so as to improve diabetes symptoms and prevent diabetes-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Qingqing Ma
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,Central Laboratory, Guizhou Aerospace Hospital, Zunyi, China
| | - Jing Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Qiang Fan
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Tao Yang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Zhuang Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Shuangxi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Ranrui Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Li Cui
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Bing Liang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiuying Xie
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| |
Collapse
|
4
|
Abo Alrob O, Al-Horani RA, Altaany Z, Nusair MB. Synergistic Beneficial Effects of Resveratrol and Diet on High-Fat Diet-Induced Obesity. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091301. [PMID: 36143977 PMCID: PMC9503422 DOI: 10.3390/medicina58091301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022]
Abstract
Introduction: Despite decades of research, obesity and its related medical complications remain a major health concern globally. Therefore, novel therapeutic strategies are needed to combat obesity and its numerous debilitating complications. Resveratrol (RES) has a potential therapeutic effect in obesity and diabetes by improving oxidative metabolism and insulin signaling. Background and Objectives: The aim of this study was to investigate the effect of RES treatment on weight loss and glucose and fatty acid metabolism. Methods: Obesity was induced in 24 mice by exposure to a high-fat diet (HFD) for 8 weeks. Mice were randomly assigned to one group of either: group 1: control, non-treated low-fat diet (LFD) for 12 weeks (n = 8), group 2: non-treated high-fat diet (HFD) for 12 weeks (n = 8), group 3: RES-treated HFD (HFD + RES) (n = 8), or group 4: RES-treated and switched to LFD (HFD-LFD + RES) (n = 8). HFD + RES mice were first fed an HFD for 8 weeks followed by 4 weeks of RES. The HFD-LFD + RES group was first fed an HFD for 8 weeks and then treated with RES and switched to an LFD for 4 weeks. Results: After 12 weeks, group 2 mice had significantly higher body weights compared to group 1 (23.71 ± 1.95 vs. 47.83 ± 2.27; p < 0.05). Group 4 had a significant decrease in body weight and improvement in glucose tolerance compared to mice in group 2 (71.3 ± 1.17 vs. 46.1 ± 1.82 and 40.9 ± 1.75, respectively; p < 0.05). Skeletal muscles expression of SIRT1, SIRT3, and PGC1α were induced in group 3 and 4 mice compared to group 2 (p < 0.01), with no changes in AMP-activated protein kinase expression levels. Furthermore, combination of RES and diet ameliorated skeletal muscle intermediate lipid accumulation and significantly improved insulin sensitivity and secretion. Conclusions: The results of this study suggest a synergistic beneficial effect of LFD and RES to lower body weight and enhance glucose and fatty acid metabolism.
Collapse
Affiliation(s)
- Osama Abo Alrob
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Yarmouk University, Irbid 211-63, Jordan or
- Correspondence:
| | - Ramzi A. Al-Horani
- Department of Exercise Science, Yarmouk University, Irbid 211-63, Jordan
| | - Zaid Altaany
- Department of Basic Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Mohammad B. Nusair
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Yarmouk University, Irbid 211-63, Jordan or
- Department of Sociobehavioral and Administrative Pharmacy, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|