1
|
Ke JP, Li JY, Yang Z, Wu HY, Yu JY, Yang Y, Chen CH, Zhou P, Hua F, Wang W, Hu F, Chu GX, Wan XC, Bao GH. Unraveling anti-aging mystery of green tea in C. elegans: Chemical truth and multiple mechanisms. Food Chem 2024; 460:140510. [PMID: 39033639 DOI: 10.1016/j.foodchem.2024.140510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Tea drinking impacts aging and aging-related diseases. However, knowledge of anti-aging molecules other than the major catechins in complex tea extracts remains limited. Here we used Caenorhabditis elegans to analyze the longevity effects of tea extracts and constituents comprehensively. We found that the hot water extract of green tea prolonged lifespan and heathspan. Further, the MeOH fraction prolonged lifespan significantly longer than other fractions. Correlation analysis between mass spectroscopic data and anti-aging activity suggests that ester-type catechins (ETCs) are the major anti-aging components, including 4 common ETCs, 6 phenylpropanoid-substituted ester-type catechins (PSECs), 5 cinnamoylated catechins (CCs), 7 ester-type flavoalkaloids (ETFs), and 4 cinnamoylated flavoalkaloids (CFs). CFs (200 μM) are the strongest anti-aging ETCs (with the longest 73% lifespan extension). Green tea hot water extracts and ETCs improved healthspan by enhancing stress resistance and reducing ROS accumulation. The mechanistic study suggests that they work by multiple pathways. Moreover, ETCs modulated gut microbial homeostasis, increased the content of short-chain fatty acids, and reduced fat content. Altogether, our study provides new evidence for the anti-aging benefits of green tea and insights into a deep understanding of the chemical truth and multi-target mechanism.
Collapse
Affiliation(s)
- Jia-Ping Ke
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China
| | - Jia-Yi Li
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China
| | - Zi Yang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China
| | - Hao-Yue Wu
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China
| | - Jing-Ya Yu
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China
| | - Yi Yang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China
| | - Chen-Hui Chen
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China
| | - Peng Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Fang Hua
- School of Pharmacy, Anhui Xinhua University, Hefei, Anhui, People's Republic of China
| | - Wei Wang
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Fenglin Hu
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Agricultural University, Hefei, 230036, China.
| | - Gang-Xiu Chu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China.
| | - Xiao-Chun Wan
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China.
| | - Guan-Hu Bao
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China; Joint Research Center for Food Nutrition and Health of IHM, Hefei, China.
| |
Collapse
|
2
|
Li X, Dou J, Shi J, Fan G, Li T, Zhou D, Wu C. Bound phenolics extracts of jujube peel relieve cadmium-induced toxicity by reducing lipid accumulation of Caenorhabditis elegans. J Food Sci 2024. [PMID: 39437256 DOI: 10.1111/1750-3841.17463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
To investigate the effect of bound phenolics extracts (BPEs) of jujube peel on relieving cadmium (Cd)-induced toxicity and its mechanism, the behavioral deficits, lipid accumulation, and fatty acid synthesis-related gene expression in Caenorhabditis elegans in Cd exposure group and BPEs improvement groups were determined and compared. The results showed that BPEs significantly improved Cd-induced behavioral deficits in C. elegans, and no significant differences could be found in low-dose (12.5 µg/mL) and high-dose (100 µg/mL) BPEs improvement groups. The treatment of BPEs effectively improved intestinal injury and lipofuscin and lipid accumulation. Especially, oil red O staining intensity in C. elegans treated with BPEs at 50 µg/mL was reduced by 12.60%. BPEs significantly controlled the increase in content of C16:0, C16:1, C18:0, C18:1, and C18:2 induced by Cd by regulating the lipid accumulation in Escherichia coli OP50. Cd exposure induced lipid accumulation in C. elegans by upregulating oleic acid synthesis-related gene expression in E. coli OP50. Furthermore, BPEs treatment significantly downregulated the fatty acid synthesis-related gene expression in C. elegans and E. coli OP50. This research could reveal the mechanism of BPEs of jujube peel in relieving Cd-induced toxicity and provide a theoretical basis for the development of functional foods rich in polyphenols. PRACTICAL APPLICATION: Jujube peel, a by-product of jujube processing, is usually discarded due to its coarse texture. However, jujube peel has been proven to possess abundant polyphenols, polysaccharides, and cyclic adenosine phosphate. In addition, in our previous research, bound phenolics extracts (BPEs) of jujube peel were found to perform better in lowering lipid accumulation than that of free phenolics extracts. This study further investigate the effect of BPEs of jujube peel on relieving Cd-induced toxicity and its mechanism on the base of our previous research. It could realize the comprehensive utilization of by-products of jujube processing.
Collapse
Affiliation(s)
- Xiaojing Li
- Co-Innovation Center for the Sustainable Forestry in Southern China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Jinfeng Dou
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, China
| | - Jieying Shi
- Co-Innovation Center for the Sustainable Forestry in Southern China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Gongjian Fan
- Co-Innovation Center for the Sustainable Forestry in Southern China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Tingting Li
- Co-Innovation Center for the Sustainable Forestry in Southern China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Dandan Zhou
- Co-Innovation Center for the Sustainable Forestry in Southern China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Caie Wu
- Co-Innovation Center for the Sustainable Forestry in Southern China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
3
|
Wang T, Liu M, Li X, Zhang S, Gu H, Wei X, Wang X, Xu Z, Shen T. Naturally-derived modulators of the Nrf2 pathway and their roles in the intervention of diseases. Free Radic Biol Med 2024; 225:560-580. [PMID: 39368519 DOI: 10.1016/j.freeradbiomed.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Cumulative evidence has verified that persistent oxidative stress is involved in the development of various chronic diseases, including pulmonary, neurodegenerative, kidney, cardiovascular, and liver diseases, as well as cancers. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in regulating cellular oxidative stress and inflammatory reactions, making it a focal point for disease prevention and treatment strategies. Natural products are essential resources for discovering leading molecules for new drug research and development. In this review, we comprehensively outlined the progression of the knowledge on the Nrf2 pathway, Nrf2 activators in clinical trials, the naturally-derived Nrf2 modulators (particularly from 2014-present), as well as their effects on the pathogenesis of chronic diseases.
Collapse
Affiliation(s)
- Tian Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Mingjie Liu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xinyu Li
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Sen Zhang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Haoran Gu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xuan Wei
- Shandong Center for Food and Drug Evaluation and Inspection, Jinan, Shandong, PR China
| | - Xiaoning Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zhenpeng Xu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
4
|
Xiao X, Wu F, Wang B, Cai Z, Wang L, Zhang Y, Yu X, Luo Y. Clerodendranthus spicatus (Thunb.) Water Extracts Reduce Lipid Accumulation and Oxidative Stress in the Caenorhabditis elegans. Int J Mol Sci 2024; 25:9655. [PMID: 39273603 PMCID: PMC11394974 DOI: 10.3390/ijms25179655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Clerodendranthus spicatus (Thunb.) (Kidney tea) is a very distinctive ethnic herbal medicine in China. Its leaves are widely used as a healthy tea. Many previous studies have demonstrated its various longevity-promoting effects; however, the safety and specific health-promoting effects of Clerodendranthus spicatus (C. spicatus) as a dietary supplement remain unclear. In order to understand the effect of C. spicatus on the longevity of Caenorhabditis elegans (C. elegans), we evaluated its role in C. elegans; C. spicatus water extracts (CSw) were analyzed for the major components and the effects on C. elegans were investigated from physiological and biochemical to molecular levels; CSw contain significant phenolic components (primarily rosmarinic acid and eugenolinic acid) and flavonoids (primarily quercetin and isorhamnetin) and can increase the lifespan of C. elegans. Further investigations showed that CSw modulate stress resistance and lipid metabolism through influencing DAF-16/FoxO (DAF-16), Heat shock factor 1 (HSF-1), and Nuclear Hormone Receptor-49 (NHR-49) signalling pathways; CSw can improve the antioxidant and hypolipidemic activity of C. elegans and prolong the lifespan of C. elegans (with the best effect at low concentrations). Therefore, the recommended daily use of C. spicatus should be considered when consuming it as a healthy tea on a daily basis.
Collapse
Affiliation(s)
- Xian Xiao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Fanhua Wu
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Bing Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zeping Cai
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Lanying Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yunfei Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xudong Yu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yanping Luo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Chen CH, Yang Y, Ke JP, Yang Z, Li JY, Zhang YX, Liu G, Liu Z, Yao G, Bao GH. Novel Flavonol Alkaloids in Green Tea: Synthesis, Detection, and Anti-Alzheimer's Disease Effect in a Transgenic Caenorhabditis elegans CL4176 Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3695-3706. [PMID: 38324412 DOI: 10.1021/acs.jafc.3c06608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Novel N-ethy-2-pyrrolidinone-substituted flavonols, myricetin alkaloids A-C (1-3), quercetin alkaloids A-C (4a, 4b, and 5), and kaempferol alkaloids A and B (6 and 7), were prepared from thermal reaction products of myricetin, quercetin, kaempferol─l-theanine, respectively. We used HPLC-ESI-HRMS/MS to detect 1-7 in 14 cultivars of green tea and found that they were all present in "Shuchazao," "Longjing 43", "Fudingdabai", and "Zhongcha 108" green teas. The structures of 1-4 and 6 were determined by extensive 1D and 2D NMR spectroscopies. These flavonol alkaloids along with their skeletal flavonols were assessed for anti-Alzheimer's disease effect based on molecular docking, acetylcholinesterase inhibition, and the transgenic Caenorhabditis elegans CL4176 model. Compound 7 strongly binds to the protein amyloid β (Aβ1-42) through hydrogen bonds (BE: -9.5 kcal/mol, Ki: 114.3 nM). Compound 3 (100 μM) is the strongest one in significantly extending the mean lifespan (13.4 ± 0.5 d, 43.0% promotion), delaying the Aβ1-42-induced paralysis (PT50: 40.7 ± 1.9 h, 17.1% promotion), enhancing the locomotion (140.0% promotion at 48 h), and alleviating glutamic acid (Glu)-induced neurotoxicity (153.5% promotion at 48 h) of CL4176 worms (p < 0.0001).
Collapse
Affiliation(s)
- Chen-Hui Chen
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yi Yang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jia-Ping Ke
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zi Yang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jia-Yi Li
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yu-Xing Zhang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Guangjin Liu
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zhijun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guan-Hu Bao
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
6
|
Wang S, Chen C, Lu Y. Epigallocatechin-3-Gallate Reduces Cd-Induced Developmental Toxicity of Bodysize in Caenorhabditis elegans via the PEK-1/eIF-2α/ATF-4 Pathway. Molecules 2023; 28:6344. [PMID: 37687170 PMCID: PMC10489720 DOI: 10.3390/molecules28176344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Cadmium (Cd), a harmful heavy metal that has no biological purpose, can harm healthy fetal and child development. Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in tea, has been shown to increase cell viability under Cd exposure and ameliorate Cd-induced kidney injury in adult male rats. Using the Caenorhabditis elegans (C. elegans) model, we demonstrated that EGCG mitigated Cd-induced body size developmental toxicity through a mechanism that did not involve chelation with EGCG and was not associated with Cd accumulation and efflux. Our research indicated that the beneficial effects of EGCG on Cd-induced body size developmental toxicity were associated with the mitigation of endoplasmic reticulum stress. Furthermore, our observations indicate that EGCG reduced Cd-induced developmental toxicity in C. elegans via the PEK-1/eIF-2α/ATF-4 pathway. Our results provide important evidence for the potential benefits of consuming tea as a detoxification agent.
Collapse
Affiliation(s)
- Shuanghui Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Green Control of Crop Pests in Hunan Higher Education, Hunan University of Humanities Science and Technology, Loudi 417000, China
| | - Chuhong Chen
- Key Laboratory of Green Control of Crop Pests in Hunan Higher Education, Hunan University of Humanities Science and Technology, Loudi 417000, China
| | - Yan Lu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
7
|
Chen CH, Yu JY, Yang Z, Ke JP, Qi Y, Yang Y, Gao B, Yao G, Bao GH. Novel methylated flavoalkaloids from Echa 1 green tea inhibit fat accumulation and enhance stress resistance in Caenorhabditis elegans. Food Chem 2023; 413:135643. [PMID: 36773353 DOI: 10.1016/j.foodchem.2023.135643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Methylation is a common structural modification of catechins in tea, which can improve the bioavailability of catechins. Flavoalkaloids are catechin derivatives with a nitrogen containing five-membered ring at the C-6 or C-8 position. Here we isolated three new methylated flavoalkaloids from Echa 1 green tea (Camellia sinensis cv. Echa 1) and synthesized another four new methylated flavoalkaloids. The structures of the new ester-type methylated catechins (etmc)-pyrrolidinone A-G (1-7) were elucidated by various spectroscopic techniques, including nuclear magnetic resonance (NMR), optical rotation, infrared, UV-vis, experimental and calculated circular dichroism (CD) spectra, and high-resolution mass. Among them, 6 and 7 showed the strongest α-glucosidase inhibitory activity and significantly lowered lipid content of Caenorhabditis elegans with 73.50 and 67.39% inhibition rate, respectively. Meanwhile, 6 and 7 also exhibited strong antioxidant activity in vitro and stress resistance to heat, oxidative stress, and UV irradiation in nematodes.
Collapse
Affiliation(s)
- Chen-Hui Chen
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Jing-Ya Yu
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Zi Yang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Jia-Ping Ke
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Yan Qi
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Yi Yang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Biao Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Guan-Hu Bao
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
8
|
Yang Z, Wang W, Qi Y, Yang Y, Chen CH, Liu JZ, Chu GX, Bao GH. Exploring new catechin derivatives as SARS-CoV-2 M pro inhibitors from tea by molecular networking, surface plasma resonance, enzyme inhibition, induced fit docking, and metadynamics simulations. Comput Biol Med 2022; 151:106288. [PMID: 36401970 PMCID: PMC9652097 DOI: 10.1016/j.compbiomed.2022.106288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/23/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
SARS-CoV-2 Mpro (Mpro) is the critical cysteine protease in coronavirus viral replication. Tea polyphenols are effective Mpro inhibitors. Therefore, we aim to isolate and synthesize more novel tea polyphenols from Zhenghedabai (ZHDB) white tea methanol-water (MW) extracts that might inhibit COVID-19. Through molecular networking, 33 compounds were identified and divided into 5 clusters. Further, natural products molecular network (MN) analysis showed that MN1 has new phenylpropanoid-substituted ester-catechin (PSEC), and MN5 has the important basic compound type hydroxycinnamoylcatechins (HCCs). Thus, a new PSEC (1, PSEC636) was isolated, which can be further detected in 14 green tea samples. A series of HCCs were synthesized (2-6), including three new acetylated HCCs (3-5). Then we used surface plasmon resonance (SPR) to analyze the equilibrium dissociation constants (KD) for the interaction of 12 catechins and Mpro. The KD values of PSEC636 (1), EGC-C (2), and EC-CDA (3) were 2.25, 2.81, and 2.44 μM, respectively. Moreover, compounds 1, 2, and 3 showed the potential Mpro inhibition with IC50 5.95 ± 0.17, 9.09 ± 0.22, and 23.10 ± 0.69 μM, respectively. Further, we used induced fit docking (IFD), binding pose metadynamics (BPMD), and molecular dynamics (MD) to explore the stable binding pose of Mpro-1, showing that 1 could tightly bond with the amino acid residues THR26, HIS41, CYS44, TYR54, GLU166, and ASP187. The computer modeling studies reveal that the ester, acetyl, and pyrogallol groups could improve inhibitory activity. Our research suggests that these catechins are effective Mpro inhibitors, and might be developed as therapeutics against COVID-19.
Collapse
Affiliation(s)
- Zi Yang
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Wei Wang
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Medicine Resources, West Anhui University, Lu'an, Anhui, 237012, China
| | - Yan Qi
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yi Yang
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Chen-Hui Chen
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jia-Zheng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, 999078, Macau
| | - Gang-Xiu Chu
- School of Information and Computer, Anhui Agricultural University, Hefei, Anhui, 230036, China,Corresponding author
| | - Guan-Hu Bao
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China,Corresponding author
| |
Collapse
|
9
|
Ding F, Zhao Y. Astaxanthin Induces Transcriptomic Responses Associated with Lifespan Extension in Caenorhabditis elegans. Antioxidants (Basel) 2022; 11:2115. [PMID: 36358487 PMCID: PMC9687064 DOI: 10.3390/antiox11112115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2023] Open
Abstract
Astaxanthin is a marine xanthophyll carotenoid which effectively prevents intracellular oxidative stress and has beneficial effects against various human diseases. It has been shown that astaxanthin protects Caenorhabditis elegans (C. elegans) from oxidative damages and extends the lifespan of C. elegans possibly by modulating genes involved in insulin/insulin-like growth factor (IGF) signaling (IIS) and the oxidoreductase system, although the exact mechanisms remain elusive. In this study, RNA sequencing analyses were employed to identify the differentially expressed genes in C. elegans in response to astaxanthin treatment. A total of 190 mRNAs and 6 microRNAs (miRNAs) were significantly changed by astaxanthin treatment in C. elegans. Gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that the mRNAs and miRNAs significantly altered by astaxanthin mainly function in innate immunity, lipid metabolism and stress responses, a significant portion of which are related to lifespan regulation in C. elegans. The study revealed novel mRNA and miRNA targets of astaxanthin, providing new insights for understanding the anti-aging mechanisms and the biological function of astaxanthin.
Collapse
Affiliation(s)
- Feng Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China
| | - Yan Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China
| |
Collapse
|