1
|
Lu ML, Yuan GH, Li CC, Hu LH, Feng XW, Jiang H, Liu LL, Rehemujiang H, Xu GS. Effects of Spent Substrate of Oyster Mushroom ( Pleurotus ostreatus) on Feed Utilization and Liver Serum Indices of Hu Sheep from the Perspective of Duodenal Microorganisms. Animals (Basel) 2024; 14:3416. [PMID: 39682381 DOI: 10.3390/ani14233416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
This study aimed to evaluate the effects of Pleurotus ostreatus spent mushroom substrate (P.SMS), which is characterized by high production but low utilization, on feed utilization and liver serum indices from the perspective of duodenal microorganisms. Forty-five 3-month-old Hu sheep were randomly assigned to five groups and fed diets in which whole-plant corn silage (WPCS) was substituted with P.SMS at levels of 0% (Con), 5% (PSMS5), 10% (PSMS10), 15% (PSMS15), or 20% (PSMS20). The results indicated that the addition of P.SMS complexly influenced the apparent digestibility of dry matter, organic matter, and crude protein, with PSMS10 showing the highest digestibility of these nutrients. P.SMS inclusion significantly affected serum alanine aminotransferase levels, with PSMS5 showing higher levels than both the Con and PSMS20 groups (p < 0.05). Importantly, the inclusion of P.SMS did not affect the richness and diversity of duodenal microorganisms. Significant differences in the phyla Verrucomicrobiota and Spirochaetota were observed between the Con and PSMS20 groups. The observed trend towards an increase in the genus Trichoderma (p = 0.057) suggests that P.SMS is susceptible to contamination by this genus, which in turn affects the structure of the intestinal flora. Furthermore, functional gene predictions indicated differences in amino acid metabolism among the groups (p < 0.05). In conclusion, feeding with 10% P.SMS resulted in the highest digestibility without adversely affecting the structure of the duodenal community or liver function.
Collapse
Affiliation(s)
- Mu-Long Lu
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Guo-Hong Yuan
- College of Animal Science and Technology, Tarim University, Alar 843300, China
- Key Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural Affairs, Tarim University, Alar 843300, China
| | - Chang-Chang Li
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Li-Hong Hu
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Xin-Wei Feng
- College of Animal Science and Technology, Tarim University, Alar 843300, China
- Key Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural Affairs, Tarim University, Alar 843300, China
| | - Hui Jiang
- College of Animal Science and Technology, Tarim University, Alar 843300, China
- Key Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural Affairs, Tarim University, Alar 843300, China
| | - Li-Lin Liu
- College of Animal Science and Technology, Tarim University, Alar 843300, China
- Key Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural Affairs, Tarim University, Alar 843300, China
| | - Halidai Rehemujiang
- College of Animal Science and Technology, Tarim University, Alar 843300, China
- Key Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural Affairs, Tarim University, Alar 843300, China
| | - Gui-Shan Xu
- College of Animal Science and Technology, Tarim University, Alar 843300, China
- Key Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural Affairs, Tarim University, Alar 843300, China
| |
Collapse
|
2
|
Liu Z, Tang R, Liu J, Zhang Z, Li Y, Zhao R. Epicatechin and β-glucan from whole highland barley grain ameliorates hyperlipidemia associated with attenuating intestinal barrier dysfunction and modulating gut microbiota in high-fat-diet-fed mice. Int J Biol Macromol 2024; 278:134917. [PMID: 39173794 DOI: 10.1016/j.ijbiomac.2024.134917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Hyperlipidemia is associated with intestinal barrier dysfunction and gut microbiota dysbiosis. Here, we aimed at investigating whether epicatechin (EC) and β-glucan (BG) from whole highland barley grain alleviated hyperlipidemia associated with ameliorating intestinal barrier dysfunction and modulating gut microbiota dysbiosis in high-fat-diet-induced mice. It was observed that EC and BG significantly improved serum lipid disorders and up-regulated expression of PPARα protein and genes. Supplementation of EC and BG attenuated intestinal barrier dysfunction via promoting goblet cells proliferation and tight junctions. Supplementation of EC and BG prevented high fat diet-induced gut microbiota dysbiosis via modulating the relative abundance of Ruminococcaceae, Lactobacillus, Desulfovibrio, Lactococcus, Allobaculum and Akkermansia, and the improving of short chain fatty acid contents. Notably, combination of EC and BG showed synergistic effect on activating PPARα expression, improving colonic physical barrier dysfunction and the relative abundance of Lactobacillus and Desulfovibrio, which may help explain the effect of whole grain highland barley on alleviating hyperlipidemia.
Collapse
Affiliation(s)
- Zehua Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| | - Ruoxin Tang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jianshen Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Zhaowan Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yuanyuan Li
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| | - Renyong Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| |
Collapse
|
3
|
Žitek Makoter T, Tancer Verboten M, Mirt I, Zupančić K, Cör Andrejč D, Knez Ž, Knez Marevci M. Beneficial Effects of Castanea sativa Wood Extract on the Human Body and Possible Food and Pharmaceutical Applications. PLANTS (BASEL, SWITZERLAND) 2024; 13:914. [PMID: 38611444 PMCID: PMC11013190 DOI: 10.3390/plants13070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/14/2024]
Abstract
The aim of this review was to investigate the potential use of Castanea sativa wood extract as a food supplement and to evaluate its beneficial properties for human health. The results of the limited amount of studies suggest promising properties, including potential anti-inflammatory effects. The literature indicates that the extract, which is rich in bioactive compounds such as tannins, offers promising therapeutic possibilities for the treatment of conditions associated with chronic inflammation. Consequently, interest in its use in food and pharmaceuticals is growing. Phytochemical studies have reported antioxidant and antimicrobial activities, and anti-inflammatory, anticancer, hypolipidemic, hypoglycemic, and neuroprotective activities. A suitable extraction method and solvent is crucial for the isolation of bioactive compounds, being green extraction technologies outstanding for the industrial recovery of chestnut wood's bioactive compounds. Nevertheless, it is important to emphasize the importance of adhering to regulatory guidelines and obtaining the necessary approvals from regulatory authorities to ensure product safety and compliance. The regulation of herbal medicinal products with proven efficacy and traditional herbal medicinal products is well defined, monitored by authorized bodies, and subject to strict control measures. It is noteworthy that medicinal products are subject to stringent quality testing to ensure safety and efficacy in use, whereas there are no comparable regulatory standards and specific labeling requirements for dietary supplements. When using herbal products, compliance with established standards in health research is essential.
Collapse
Affiliation(s)
- Taja Žitek Makoter
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.M.); (D.C.A.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia
| | | | - Ivan Mirt
- Tanin Sevnica, Hermanova 1, SI-8290 Sevnica, Slovenia; (I.M.); (K.Z.)
| | - Katarina Zupančić
- Tanin Sevnica, Hermanova 1, SI-8290 Sevnica, Slovenia; (I.M.); (K.Z.)
| | - Darija Cör Andrejč
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.M.); (D.C.A.); (Ž.K.)
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.M.); (D.C.A.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia
| | - Maša Knez Marevci
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.M.); (D.C.A.); (Ž.K.)
| |
Collapse
|
4
|
Huang C, Qian J, Liu Y, Zhang L, Yang Y. Empagliflozin attenuates liver fibrosis in high-fat diet/streptozotocin-induced mice by modulating gut microbiota. Clin Exp Pharmacol Physiol 2024; 51:e13842. [PMID: 38302074 DOI: 10.1111/1440-1681.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
The effects of SGLT2 inhibitors on hepatic fibrosis in diabetes remain unclear. This study aimed to investigate the effects of empagliflozin on liver fibrosis in high-fat diet/streptozotocin-induced mice and the correlation with gut microbiota. After the application of empagliflozin for 6 weeks, we performed oral glucose tolerance and intraperitoneal insulin tolerance tests to assess glucose tolerance and insulin resistance, and stained liver sections to evaluate histochemical and hepatic pathological markers of liver fibrosis. Moreover, 16S rRNA amplicon sequencing was performed on stool samples to explore changes in the composition of intestinal bacteria. We finally analysed the correlation between gut microbiome and liver fibrosis scores or indicators of glucose metabolism. The results showed that empagliflozin intervention improved glucose metabolism and liver function with reduced liver fibrosis, which might be related to changes in intestinal microbiota. In addition, the abundance of intestinal probiotic Lactobacillus increased, while Ruminococcus and Adlercreutzia decreased after empagliflozin treatment, and correlation analysis showed that the changes in microbiota were positively correlated with liver fibrosis and glucose metabolism. Overall, considering the contribution of the gut microbiota in metabolism, empagliflozin might have improved the beneficial balance of intestinal bacteria composition. The present study provides evidence and indicates the involvement of the gut-liver axis by SGLT2 inhibitors in T2DM with liver fibrosis.
Collapse
Affiliation(s)
- Chuxin Huang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiali Qian
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Liu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zhang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yehong Yang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Li D, Yang H, Li Q, Ma K, Wang H, Wang C, Li T, Ma Y. Prickly Ash Seeds improve immunity of Hu sheep by changing the diversity and structure of gut microbiota. Front Microbiol 2023; 14:1273714. [PMID: 38029081 PMCID: PMC10644117 DOI: 10.3389/fmicb.2023.1273714] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Prickly Ash Seeds (PAS), as a traditional Chinese medicinal herb, have pharmacological effects such as anti-asthma, anti-thrombotic, and anti-bacterial, but their impact on gut microbiota is still unclear. This study used a full-length 16 s rRNA gene sequencing technique to determine the effect of adding PAS to the diet on the structure and distribution of gut microbiota in Hu sheep. All lambs were randomly divided into two groups, the CK group was fed with a basal ration, and the LZS group was given a basal diet with 3% of PAS added to the ration. The levels of inflammatory factors (IL-10, IL-1β, and TNF-α) in intestinal tissues were measured by enzyme-linked immunosorbent assay (ELISA) for Hu sheep in the CK and LZS group. The results indicate that PAS can increase the diversity and richness of gut microbiota, and can affect the community composition of gut microbiota. LEfSe analysis revealed that Verrucomicrobiota, Kiritimatiella, WCHB 41, and uncultured_rumen_bacterium were significantly enriched in the LZS group. KEGG pathway analysis found that LZS was significantly higher than the CK group in the Excretory system, Folding, sorting and degradation, and Immune system pathways (p < 0.05). The results of ELISA assay showed that the level of IL-10 was significantly higher in the LZS group than in the CK group (p < 0.05), and the levels of TNF-α and IL-1β were significantly higher in the CK group than in the LZS group (p < 0.05). LEfSe analysis revealed that the dominant flora in the large intestine segment changed from Bacteroidota and Gammaproteobacteria to Akkermansiaceae and Verrucomicrobiae after PAS addition to Hu sheep lambs; the dominant flora in the small intestine segment changed from Lactobacillales and Aeriscardovia to Kiritimatiellae and WCHB1 41. In conclusion, the addition of PAS to sheep diets can increase the number and types of beneficial bacteria in the intestinal tract, improve lamb immunity, and reduce intestinal inflammation. It provides new insights into healthy sheep production.
Collapse
Affiliation(s)
- Dengpan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Hai Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Keyan Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Chunhui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| |
Collapse
|