1
|
Ren L, Dang L, Wang D, Jiang Y, Wang T, Liu Z, Li X, Cui F, Li T, Li J. Natural polysaccharides in the prevention of hyperuricemia: Source, classification, mechanism, application in food industry. Int J Biol Macromol 2024; 286:138421. [PMID: 39645137 DOI: 10.1016/j.ijbiomac.2024.138421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Hyperuricemia (HUA) is one of the major threats to human health. In recent years, with the gradual increase in the incidence rate of Hua, the prevention and treatment of HUA has attracted more and more attention. Clinical pharmaceutical interventions, such as Allopurinol, Febuxostat, and so on, though effective, are usually accompanied by notable adverse effects. Therefore, alternative therapy with high-safety natural components has received more and more attention from scholars. The natural polysaccharides showed a significant potential in HUA therapy and more and more natural polysaccharides for treating HUA were being obtained. Therefore, in this review, the recent progress on natural polysaccharides in preventing HUA was presented focusing on the sources, classification, and biological activities (oxidative stress, anti-inflammatory, and UA-lowering) of natural polysaccharides. Furthermore, this review explores the mechanisms of action and application. It is beneficial to the development of polysaccharides for natural HUA therapy and the results of this review could offer guidance on preventing the occurrence of HUA in daily life.
Collapse
Affiliation(s)
- Likun Ren
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China
| | - Lingling Dang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China
| | - Yang Jiang
- School of Public Health, Dali University, Dali 671000, China
| | - Tian Wang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China
| | - Zhiteng Liu
- Dalian Food Co., Ltd., Jinzhou, Liaoning 121209, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China
| | - Fangchao Cui
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China.
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning 116029, China.
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning 121013, China
| |
Collapse
|
2
|
Zhao Y, Song JY, Feng R, Hu JC, Xu H, Ye ML, Jiang JD, Chen LM, Wang Y. Renal Health Through Medicine-Food Homology: A Comprehensive Review of Botanical Micronutrients and Their Mechanisms. Nutrients 2024; 16:3530. [PMID: 39458524 PMCID: PMC11510533 DOI: 10.3390/nu16203530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/18/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND As an ancient concept and practice, "food as medicine" or "medicine-food homology" is receiving more and more attention these days. It is a tradition in many regions to intake medicinal herbal food for potential health benefits to various organs and systems including the kidney. Kidney diseases usually lack targeted therapy and face irreversible loss of function, leading to dialysis dependence. As the most important organ for endogenous metabolite and exogenous nutrient excretion, the status of the kidney could be closely related to daily diet. Therefore, medicinal herbal food rich in antioxidative, anti-inflammation micronutrients are ideal supplements for kidney protection. Recent studies have also discovered its impact on the "gut-kidney" axis. METHODS Here, we review and highlight the kidney-protective effects of botanicals with medicine-food homology including the most frequently used Astragalus membranaceus and Angelica sinensis (Oliv.) Diels, concerning their micronutrients and mechanism, offering a basis and perspective for utilizing and exploring the key substances in medicinal herbal food to protect the kidney. RESULTS The index for medicine-food homology in China contains mostly botanicals while many of them are also consumed by people in other regions. Micronutrients including flavonoids, polysaccharides and others present powerful activities towards renal diseases. CONCLUSIONS Botanicals with medicine-food homology are widely speeded over multiple regions and incorporating these natural compounds into dietary habits or as supplements shows promising future for renal health.
Collapse
Affiliation(s)
- Yi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Ye Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ru Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meng-Liang Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li-Meng Chen
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Zhu LY, Zhang MY, Juan-Cheng, Zhang YX. Shield-armed probiotic delivery system based on co-deposition of poly-dopamine and poly-lysine helps Lactiplantibacillus plantarum relieve hyperuricemia. Int J Biol Macromol 2024; 280:135666. [PMID: 39299415 DOI: 10.1016/j.ijbiomac.2024.135666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Hyperuricemia (HUA) is a disease characterized by an abnormal metabolism of purine. Lactic acid bacteria (LAB) have attracted much attention for their safe and effective treatment of HUA by inhibiting xanthine oxidase (XOD) and regulating gut microbiota. However, the effectiveness of probiotics can be compromised by the harsh environment of the gastrointestinal tract. In preliminary experiments, Lactiplantibacillus plantarum DY1, which is generally regarded as safe (GRAS), can lower uric acid. We have devised a straightforward and efficient technique for encapsulating DY1 using a coating comprising polydopamine (PDA) co-deposited with poly-l-lysine (PLL) to obtain DY1@PDLL. TEM, SEM, FT-IR and DLS tests showed that DY1 was successfully coated. Incubate at SGF or SIF for 3 h, the number of viable bacteria of free probiotics and DY1@PDLL decreased by 0.92 and 0.46 log cfu/mL, 1.66 and 0.66 log cfu/mL, respectively. The fluorescence intensity of the intestines of the DY1@PDLL treated mice was 3.96 times that of free probiotic. Notably, DY1@PDLL can reduce the uric acid levels of HUA mice by 31.63 % and free probiotics by 18.72 % (≈1.69 times). DY1@PDLL could also regulate gut microbiota and serum metabolic profile. These findings unequivocally highlight the remarkable potential of DY1@PDLL as an exceptional oral probiotic delivery system.
Collapse
Affiliation(s)
- Lin-Yan Zhu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Juan-Cheng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
4
|
Yu H, Lou Z, Wu T, Wan X, Huang H, Wu Y, Li B, Tu Y, He P, Liu J. Mechanisms of epigallocatechin gallate (EGCG) in ameliorating hyperuricemia: insights into gut microbiota and intestinal function in a mouse model. Food Funct 2024; 15:6068-6081. [PMID: 38757391 DOI: 10.1039/d4fo01606h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Epigallocatechin gallate (EGCG), a prominent bioactive compound found in tea, offers numerous health benefits. Previous studies have highlighted its potential in mitigating hyperuricemia. In this study, hyperuricemic mice induced by potassium oxonate (PO) were treated with EGCG or the anti-hyperuricemia medication allopurinol (AP) to investigate the mechanisms underlying their anti-hyperuricemic effects. The results demonstrated that both EGCG and AP significantly reduced serum uric acid (UA) levels. Further analysis revealed that EGCG promoted the expression of UA secretion transporter genes (Oat1 and Oct1) while inhibiting the expression of UA reabsorption transporter genes (Urat1 and Glut9) in the kidney. By 16S rDNA sequencing, EGCG, but not AP, was found to alter the composition of the gut microbiota. Notably, EGCG induced significant changes in the relative abundance of specific bacteria such as Lactobacillus, Faecalibaculum, and Bifidobacterium, which displayed high correlations with serum UA levels and UA-related gene expression. Metabolomic analysis suggested that EGCG-induced modifications in bacterial metabolites might contribute to the alleviation of hyperuricemia. Transcriptomic analysis of the intestinal epithelium identifies 191 differentially expressed genes (DEGs) in EGCG-treated mice, including 8 purine-related genes. This study elucidates the anti-hyperuricemic mechanisms of EGCG, particularly its influence on the gut microbiota and gene expression in the intestinal epithelium.
Collapse
Affiliation(s)
- Haonan Yu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| | - Zhenyou Lou
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| | - Tingbo Wu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P.R. China
| | - Haitao Huang
- Tea Research Institute, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, Zhejiang, P.R. China
| | - Yuanyuan Wu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| | - Bo Li
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| | - Youying Tu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| | - Puming He
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| | - Junsheng Liu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| |
Collapse
|
5
|
Wang N, Chen S, Xie Y, Liu X, Xi Z, Li J, Xue C, Deng R, Min W, Kang R, Xie L. The Sanbi Decoction alleviates intervertebral disc degeneration in rats through intestinal flora and serum metabolic homeostasis modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155480. [PMID: 38484462 DOI: 10.1016/j.phymed.2024.155480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is an essential cause of low back pain (LBP), the incidence of which has risen in recent years and is progressively younger, but treatment options are limited, placing a serious economic burden on society. Sanbi decoction (SBD) is an important classical formula for the treatment of IVDD, which can significantly improve patients' symptoms and is a promising alternative therapy. PURPOSE The aim of this study is to investigate the safety and efficacy of SBD in the treatment of IVDD and to explore the underlying mechanisms by using an integrated analytical approach of microbiomics and serum metabolomics, as well as by using molecular biology. METHODS A rat IVDD puncture model was established and treated by gavage with different concentrations of SBD, and clean faeces, serum, liver, kidney, and intervertebral disc (IVD) were collected after 4 weeks. We assessed the safety by liver and kidney weighing, functional tests and tissue staining, the expression of tumor necrosis factor-alpha (TNF-ɑ), interleukin 1β (IL-1β) and interleukin 6 (IL-6) inflammatory factors in serum was detected by ELISA kits, and X-ray test, magnetic resonance imaging (MRI) examination, immunohistochemistry (IHC), western blotting (WB), hematoxylin-eosin (HE) staining and safranin O-fast green (SO/FG) staining were used to assess the efficacy. Finally, we performed 16S rRNA sequencing analysis on the faeces of different groups and untargeted metabolomics on serum and analyzed the association between them. RESULTS SBD can effectively reduce the inflammatory response, regulate the metabolic balance of extracellular matrix (ECM), improve symptoms, and restore IVD function. In addition, SBD can significantly improve the diversity of intestinal flora and maintain the balance. At the phylum level, SBD greatly increased the relative abundance of Patescibacteria and Actinobacteriota and decreased the relative abundance of Bacteroidota. At the genus level, SBD significantly increased the relative abundance of Clostridia_UCG-014, Enterorhabdus, and Adlercreutzia, and decreased the relative abundance of Ruminococcaceae_UCG-005 (p < 0.05). Untargeted metabolomics indicated that SBD significantly improved serum metabolites and altered serum expression of 4alpha-phorbol 12,13-didecanoate (4alphaPDD), euscaphic acid (EA), alpha-muricholic acid (α-MCA), 5-hydroxyindoleacetic acid (5-HIAA), and kynurenine (Kyn) (p < 0.05), and the metabolic pathways were mainly lipid metabolism and amino acid metabolism. CONCLUSIONS This study demonstrated that SBD can extensively regulate intestinal flora and serum metabolic homeostasis to reduce inflammatory response, inhibit the degradation of ECM, restore IVD height and water content to achieve apparent therapeutic effect for IVDD.
Collapse
Affiliation(s)
- Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China
| | - Shuang Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China
| | - Yimin Xie
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210029, China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China
| | - Jingchi Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Congyang Xue
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China
| | - Wen Min
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210029, China.
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China.
| | - Lin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, China.
| |
Collapse
|
6
|
Zhou Y, Zeng Y, Wang R, Pang J, Wang X, Pan Z, Jin Y, Chen Y, Yang Y, Ling W. Resveratrol Improves Hyperuricemia and Ameliorates Renal Injury by Modulating the Gut Microbiota. Nutrients 2024; 16:1086. [PMID: 38613119 PMCID: PMC11013445 DOI: 10.3390/nu16071086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Resveratrol (RES) has been reported to prevent hyperuricemia (HUA); however, its effect on intestinal uric acid metabolism remains unclear. This study evaluated the impact of RES on intestinal uric acid metabolism in mice with HUA induced by a high-fat diet (HFD). Moreover, we revealed the underlying mechanism through metagenomics, fecal microbiota transplantation (FMT), and 16S ribosomal RNA analysis. We demonstrated that RES reduced the serum uric acid, creatinine, urea nitrogen, and urinary protein levels, and improved the glomerular atrophy, unclear renal tubule structure, fibrosis, and renal inflammation. The results also showed that RES increased intestinal uric acid degradation. RES significantly changed the intestinal flora composition of HFD-fed mice by enriching the beneficial bacteria that degrade uric acid, reducing harmful bacteria that promote inflammation, and improving microbial function via the upregulation of purine metabolism. The FMT results further showed that the intestinal microbiota is essential for the effect of RES on HUA, and that Lactobacillus may play a key role in this process. The present study demonstrated that RES alleviates HFD-induced HUA and renal injury by regulating the gut microbiota composition and the metabolism of uric acid.
Collapse
Affiliation(s)
- Yuqing Zhou
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Yupeng Zeng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Ruijie Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Juan Pang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Xin Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Zhijun Pan
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Yufeng Jin
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Yu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Yan Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| |
Collapse
|
7
|
Deng Y, Zhang L, Chen S, Xu D, Wu W, Shen T, Liu Z, Yang L, Wen A, Hou Y, Shao F. Exploring the clinical efficacy and mechanism of high-position colon dialysis combined with Traditional Chinese Medicine retention enema in real-world patients with stage 3-5 chronic kidney disease (non-dialysis) based on the theory of the Gut-Kidney axis. Front Pharmacol 2024; 14:1246852. [PMID: 38328574 PMCID: PMC10847354 DOI: 10.3389/fphar.2023.1246852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/31/2023] [Indexed: 02/09/2024] Open
Abstract
Background: With societal and economic development, the annual incidence of chronic kidney disease (CKD) is increasing. Current treatments for CKD are limited, and once patients progress to the uraemic stage, it places a significant economic burden on families and society. Based on the "gut-kidney axis" theory and real-world research, this study aims to evaluate the clinical efficacy, safety, and potential mechanism of high-position colon dialysis combined with traditional Chinese medicine (TCM) retention enema in treating stage 3-5 chronic kidney disease (non-dialysis). Additionally, it seeks to identify new therapeutic targets and approaches for CKD treatment. Methods: The TCM decoction was analyzed using Ultra-Performance Liquid Chromatography-Quadrupole-Orbitrap-High Resolution Mass Spectrometry (UPLC-Q-Orbitrap-HRMS). Participants meeting the inclusion criteria were divided into a control group (n = 153) and a treatment group (n = 159) based on their preferences and physicians' recommendations. Both groups adhered to a high-quality low-protein, low-salt, low-phosphorus, and low-fat diet supplemented with essential amino acids, and were monitored for blood pressure, blood glucose, and blood lipids. The treatment group received high-position colon dialysis combined with TCM retention enemas (administered at least 12 times every other day). Results: Thirteen compounds were identified from the herbs by UPLC-Q-Orbitrap-HRMS. The CKD3-5 treatment group exhibited improvements in blood biochemistry and other laboratory indices, with significant enhancements in renal function-related indices for CKD4 and CKD5 stages (p < 0.05). Following treatment, indoxyl sulfate (IS), endotoxin, and D-lactic acid levels decreased to a certain extent in both groups, with a statistically significant difference observed within the treatment group (p < 0.05). The treatment group displayed a significant reduction in aerobic bacterial colonies, an increase in anaerobic bacterial colonies, a decrease in Escherichia coli colonies, and an increase in Bifidobacterium and Lactobacillus colonies (p < 0.05). No significant changes in colony numbers were observed in the control group. Conclusion: High-position colon dialysis combined with TCM retention enema may serve as an adjuvant treatment for CKD4-5 (non-dialysis), and its mechanism may be related to the reduction of uraemic toxins, improvement of intestinal mucosal barrier function, and regulation of intestinal microecology. Clinical Trial Registration: https://www.chictr.org.cn/, identifier ChiCTR2200062852.
Collapse
Affiliation(s)
- Yanli Deng
- Department of Nephrology, Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Leixiao Zhang
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Si Chen
- Department of Nephrology, Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Dongxian Xu
- Department of Nephrology, Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Wei Wu
- Department of Nephrology, Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- Department of Nephrology, Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Liu
- Department of Nephrology, Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Lin Yang
- Department of Nephrology, Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Aiwei Wen
- Department of Nephrology, Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Yuhao Hou
- Department of Nephrology, Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Fanyun Shao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Jia X, Chen Q, Wu H, Liu H, Jing C, Gong A, Zhang Y. Exploring a novel therapeutic strategy: the interplay between gut microbiota and high-fat diet in the pathogenesis of metabolic disorders. Front Nutr 2023; 10:1291853. [PMID: 38192650 PMCID: PMC10773723 DOI: 10.3389/fnut.2023.1291853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
In the past two decades, the rapid increase in the incidence of metabolic diseases, including obesity, diabetes, dyslipidemia, non-alcoholic fatty liver disease, hypertension, and hyperuricemia, has been attributed to high-fat diets (HFD) and decreased physical activity levels. Although the phenotypes and pathologies of these metabolic diseases vary, patients with these diseases exhibit disease-specific alterations in the composition and function of their gut microbiota. Studies in germ-free mice have shown that both HFD and gut microbiota can promote the development of metabolic diseases, and HFD can disrupt the balance of gut microbiota. Therefore, investigating the interaction between gut microbiota and HFD in the pathogenesis of metabolic diseases is crucial for identifying novel therapeutic strategies for these diseases. This review takes HFD as the starting point, providing a detailed analysis of the pivotal role of HFD in the development of metabolic disorders. It comprehensively elucidates the impact of HFD on the balance of intestinal microbiota, analyzes the mechanisms underlying gut microbiota dysbiosis leading to metabolic disruptions, and explores the associated genetic factors. Finally, the potential of targeting the gut microbiota as a means to address metabolic disturbances induced by HFD is discussed. In summary, this review offers theoretical support and proposes new research avenues for investigating the role of nutrition-related factors in the pathogenesis of metabolic disorders in the organism.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiwen Wu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hongbo Liu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chunying Jing
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Aimin Gong
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Yuanyuan Zhang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|