1
|
Lamoureux ES, Cheng Y, Islamzada E, Matthews K, Duffy SP, Ma H. Biophysical profiling of red blood cells from thin-film blood smears using deep learning. Heliyon 2024; 10:e35276. [PMID: 39170127 PMCID: PMC11336426 DOI: 10.1016/j.heliyon.2024.e35276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Microscopic inspection of thin-film blood smears is widely used to identify red blood cell (RBC) pathologies, including malaria parasitism and hemoglobinopathies, such as sickle cell disease and thalassemia. Emerging research indicates that non-pathologic changes in RBCs can also be detected in images, such as deformability and morphological changes resulting from the storage lesion. In transfusion medicine, cell deformability is a potential biomarker for the quality of donated RBCs. However, a major impediment to the clinical translation of this biomarker is the difficulty associated with performing this measurement. To address this challenge, we developed an approach for biophysical profiling of RBCs based on cell images in thin-film blood smears. We hypothesize that subtle cellular changes are evident in blood smear images, but this information is inaccessible to human expert labellers. To test this hypothesis, we developed a deep learning strategy to analyze Giemsa-stained blood smears to assess the subtle morphologies indicative of RBC deformability and storage-based degradation. Specifically, we prepared thin-film blood smears from 27 RBC samples (9 donors evaluated at 3 storage time points) and imaged them using high-resolution microscopy. Using this dataset, we trained a convolutional neural network to evaluate image-based morphological features related to cell deformability. The prediction of donor deformability is strongly correlated to the microfluidic scores and can be used to categorize images into specific deformability groups with high accuracy. We also used this model to evaluate differences in RBC morphology resulting from cold storage. Together, our results demonstrate that deep learning models can detect subtle cellular morphology differences resulting from deformability and cold storage. This result suggests the potential to assess donor blood quality from thin-film blood smears, which can be acquired ubiquitously in clinical workflows.
Collapse
Affiliation(s)
- Erik S. Lamoureux
- Department of Mechanical Engineering, University of British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Canada
| | - You Cheng
- Department of Mechanical Engineering, University of British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Canada
| | - Emel Islamzada
- Department of Mechanical Engineering, University of British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Canada
| | - Kerryn Matthews
- Department of Mechanical Engineering, University of British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Canada
| | - Simon P. Duffy
- Department of Mechanical Engineering, University of British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Canada
- British Columbia Institute of Technology, Canada
| | - Hongshen Ma
- Department of Mechanical Engineering, University of British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Canada
- Vancouver Prostate Centre, Vancouver General Hospital, Canada
| |
Collapse
|
2
|
Hua X, Han K, Mandracchia B, Radmand A, Liu W, Kim H, Yuan Z, Ehrlich SM, Li K, Zheng C, Son J, Silva Trenkle AD, Kwong GA, Zhu C, Dahlman JE, Jia S. Light-field flow cytometry for high-resolution, volumetric and multiparametric 3D single-cell analysis. Nat Commun 2024; 15:1975. [PMID: 38438356 PMCID: PMC10912605 DOI: 10.1038/s41467-024-46250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
Imaging flow cytometry (IFC) combines flow cytometry and fluorescence microscopy to enable high-throughput, multiparametric single-cell analysis with rich spatial details. However, current IFC techniques remain limited in their ability to reveal subcellular information with a high 3D resolution, throughput, sensitivity, and instrumental simplicity. In this study, we introduce a light-field flow cytometer (LFC), an IFC system capable of high-content, single-shot, and multi-color acquisition of up to 5,750 cells per second with a near-diffraction-limited resolution of 400-600 nm in all three dimensions. The LFC system integrates optical, microfluidic, and computational strategies to facilitate the volumetric visualization of various 3D subcellular characteristics through convenient access to commonly used epi-fluorescence platforms. We demonstrate the effectiveness of LFC in assaying, analyzing, and enumerating intricate subcellular morphology, function, and heterogeneity using various phantoms and biological specimens. The advancement offered by the LFC system presents a promising methodological pathway for broad cell biological and translational discoveries, with the potential for widespread adoption in biomedical research.
Collapse
Affiliation(s)
- Xuanwen Hua
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Keyi Han
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Biagio Mandracchia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Afsane Radmand
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wenhao Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Yuan
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Samuel M Ehrlich
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kaitao Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Corey Zheng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jeonghwan Son
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Aaron D Silva Trenkle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
3
|
Aubrecht P, Smejkal J, Panuška P, Španbauerová K, Neubertová V, Kaule P, Matoušek J, Vinopal S, Liegertová M, Štofik M, Malý J. Performance and biocompatibility of OSTEMER 322 in cell-based microfluidic applications. RSC Adv 2024; 14:3617-3635. [PMID: 38268545 PMCID: PMC10804231 DOI: 10.1039/d3ra05789e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
The Off-Stoichiometry Thiol-ene and Epoxy (OSTE+) polymer technology has been increasingly utilised in the field of microfluidics and lab-on-a-chip applications. However, the impact of OSTEMER polymers, specifically the OSTEMER 322 formulation, on cell viability has remained limited. In this work, we thoroughly explored the biocompatibility of this commercial OSTEMER formulation, along with various surface modifications, through a broad range of cell types, from fibroblasts to epithelial cells. We employed cell viability and confluence assays to evaluate the performance of the material and its modified variants in cell culturing. The properties of the pristine and modified OSTEMER were also investigated using surface characterization methods including contact angle, zeta potential, and X-ray photoelectron spectroscopy. Mass spectrometry analysis confirmed the absence of leaching constituents from OSTEMER, indicating its safety for cell-based applications. Our findings demonstrated that cell viability on OSTEMER surfaces is sufficient for typical cell culture experiments, suggesting OSTEMER 322 is a suitable material for a variety of cell-based assays in microfluidic devices.
Collapse
Affiliation(s)
- Petr Aubrecht
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Jiří Smejkal
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Petr Panuška
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Klára Španbauerová
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Viktorie Neubertová
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Pavel Kaule
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
- Department of Chemistry, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Jindřich Matoušek
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Stanislav Vinopal
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Michaela Liegertová
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Marcel Štofik
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Jan Malý
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| |
Collapse
|
4
|
Hajam MI, Khan MM. Microfluidics: a concise review of the history, principles, design, applications, and future outlook. Biomater Sci 2024; 12:218-251. [PMID: 38108438 DOI: 10.1039/d3bm01463k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Microfluidic technologies have garnered significant attention due to their ability to rapidly process samples and precisely manipulate fluids in assays, making them an attractive alternative to conventional experimental methods. With the potential for revolutionary capabilities in the future, this concise review provides readers with insights into the fascinating world of microfluidics. It begins by introducing the subject's historical background, allowing readers to familiarize themselves with the basics. The review then delves into the fundamental principles, discussing the underlying phenomena at play. Additionally, it highlights the different aspects of microfluidic device design, classification, and fabrication. Furthermore, the paper explores various applications, the global market, recent advancements, and challenges in the field. Finally, the review presents a positive outlook on trends and draws lessons to support the future flourishing of microfluidic technologies.
Collapse
Affiliation(s)
- Mohammad Irfan Hajam
- Department of Mechanical Engineering, National Institute of Technology Srinagar, India.
| | - Mohammad Mohsin Khan
- Department of Mechanical Engineering, National Institute of Technology Srinagar, India.
| |
Collapse
|
5
|
Sun J, Huang X, Chen J, Xiang R, Ke X, Lin S, Xuan W, Liu S, Cao Z, Sun L. Recent advances in deformation-assisted microfluidic cell sorting technologies. Analyst 2023; 148:4922-4938. [PMID: 37743834 DOI: 10.1039/d3an01150j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Cell sorting is an essential prerequisite for cell research and has great value in life science and clinical studies. Among the many microfluidic cell sorting technologies, label-free methods based on the size of different cell types have been widely studied. However, the heterogeneity in size for cells of the same type and the inevitable size overlap between different types of cells would result in performance degradation in size-based sorting. To tackle such challenges, deformation-assisted technologies are receiving more attention recently. Cell deformability is an inherent biophysical marker of cells that reflects the changes in their internal structures and physiological states. It provides additional dimensional information for cell sorting besides size. Therefore, in this review, we summarize the recent advances in deformation-assisted microfluidic cell sorting technologies. According to how the deformability is characterized and the form in which the force acts, the technologies can be divided into two categories: (1) the indirect category including transit-time-based and image-based methods, and (2) the direct category including microstructure-based and hydrodynamics-based methods. Finally, the separation performance and the application scenarios of each method, the existing challenges and future outlook are discussed. Deformation-assisted microfluidic cell sorting technologies are expected to realize greater potential in the label-free analysis of cells.
Collapse
Affiliation(s)
- Jingjing Sun
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Xiwei Huang
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Jin Chen
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Rikui Xiang
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Xiang Ke
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Siru Lin
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Weipeng Xuan
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, China
| | - Zhen Cao
- College of Information Science and Electronic Engineering, Zhejiang University, China
| | - Lingling Sun
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| |
Collapse
|
6
|
Sun A, Li Y, Zhu P, He X, Jiang Z, Kong Y, Liu C, Wang S. Dual-view transport of intensity phase imaging flow cytometry. BIOMEDICAL OPTICS EXPRESS 2023; 14:5199-5207. [PMID: 37854577 PMCID: PMC10581798 DOI: 10.1364/boe.504863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 10/20/2023]
Abstract
In this work, we design multi-parameter phase imaging flow cytometry based on dual-view transport of intensity (MPFC), which integrates phase imaging and microfluidics to a microscope, to obtain single-shot quantitative phase imaging on cells flowing in the microfluidic channel. The MPFC system has been proven with simple configuration, accurate phase retrieval, high imaging contrast, and real-time imaging and has been successfully employed not only in imaging, recognizing, and analyzing the flowing cells even with high-flowing velocities but also in tracking cell motilities, including rotation and binary rotation. Current results suggest that our proposed MPFC provides an effective tool for imaging and analyzing cells in microfluidics and can be potentially used in both fundamental and clinical studies.
Collapse
Affiliation(s)
- Aihui Sun
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yaxi Li
- Radiology Department, Jiangnan University Medical Center, Wuxi, Jiangsu, 214122, China
| | - Pengfei Zhu
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaoliang He
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhilong Jiang
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yan Kong
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Cheng Liu
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Shouyu Wang
- Jiangsu Province Engineering Research Center of Integrated Circuit Reliability Technology and Testing System & School of Electronics and Information Engineering, OptiX+ Laboratory, Wuxi University, Wuxi, Jiangsu 214105, China
- Single Molecule Nanometry Laboratory, China
| |
Collapse
|
7
|
Zhou S, Chen B, Fu ES, Yan H. Computer vision meets microfluidics: a label-free method for high-throughput cell analysis. MICROSYSTEMS & NANOENGINEERING 2023; 9:116. [PMID: 37744264 PMCID: PMC10511704 DOI: 10.1038/s41378-023-00562-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 09/26/2023]
Abstract
In this paper, we review the integration of microfluidic chips and computer vision, which has great potential to advance research in the life sciences and biology, particularly in the analysis of cell imaging data. Microfluidic chips enable the generation of large amounts of visual data at the single-cell level, while computer vision techniques can rapidly process and analyze these data to extract valuable information about cellular health and function. One of the key advantages of this integrative approach is that it allows for noninvasive and low-damage cellular characterization, which is important for studying delicate or fragile microbial cells. The use of microfluidic chips provides a highly controlled environment for cell growth and manipulation, minimizes experimental variability and improves the accuracy of data analysis. Computer vision can be used to recognize and analyze target species within heterogeneous microbial populations, which is important for understanding the physiological status of cells in complex biological systems. As hardware and artificial intelligence algorithms continue to improve, computer vision is expected to become an increasingly powerful tool for in situ cell analysis. The use of microelectromechanical devices in combination with microfluidic chips and computer vision could enable the development of label-free, automatic, low-cost, and fast cellular information recognition and the high-throughput analysis of cellular responses to different compounds, for broad applications in fields such as drug discovery, diagnostics, and personalized medicine.
Collapse
Affiliation(s)
- Shizheng Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
| | - Bingbing Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
| | - Edgar S. Fu
- Graduate School of Computing and Information Science, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Hong Yan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
| |
Collapse
|
8
|
Ling Z, Han K, Liu W, Hua X, Jia S. Volumetric live-cell autofluorescence imaging using Fourier light-field microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:4237-4245. [PMID: 37799690 PMCID: PMC10549745 DOI: 10.1364/boe.495506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 10/07/2023]
Abstract
This study introduces a rapid, volumetric live-cell imaging technique for visualizing autofluorescent sub-cellular structures and their dynamics by employing high-resolution Fourier light-field microscopy. We demonstrated this method by capturing lysosomal autofluorescence in fibroblasts and HeLa cells. Additionally, we conducted multicolor imaging to simultaneously observe lysosomal autofluorescence and fluorescently-labeled organelles such as lysosomes and mitochondria. We further analyzed the data to quantify the interactions between lysosomes and mitochondria. This research lays the foundation for future exploration of native cellular states and functions in three-dimensional environments, effectively reducing photodamage and eliminating the necessity for exogenous labels.
Collapse
Affiliation(s)
- Zhi Ling
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Keyi Han
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Wenhao Liu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Xuanwen Hua
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Shu Jia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|