1
|
Khezri H, Mostafavi M, Dabirmanesh B, Khajeh K. Peptibodies: Bridging the gap between peptides and antibodies. Int J Biol Macromol 2024; 278:134718. [PMID: 39142490 DOI: 10.1016/j.ijbiomac.2024.134718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Peptides are a very critical class of pharmaceutical compounds that can control several signaling pathways and thereby affect many physiological and biochemical processes. Previous research suggests that both peptides and antibodies may serve as potent tools for research, diagnostics, vaccination, and therapeutics across diverse domains. The distinct attributes of peptides, like their profound tissue penetration, efficient cellular internalization, reduced immunogenicity, and adaptability to chemical modification, underscore their significance in biomedical applications. However, they also possess drawbacks such as lower affinity, poor absorption, low stability to proteolytic digestion, and rapid clearance. The advent of peptibodies is a significant advance that improves the limitations of both peptides and antibodies. Peptibodies, or Peptide-Fc fusions, represent a promising therapeutic modality comprising biologically active peptides fused to an Fc domain. The stability and efficacy of the peptide are enhanced by this fusion strategy, which overcomes some of the inherent limitations. Many peptibodies have been developed to treat conditions like cancer, diabetes, and lupus. Romiplostim and Dulaglutide are the only ones approved by the EMA and FDA, respectively. Given the growing significance of peptibodies in the pharmaceutical landscape, this investigation aims to explain key aspects encompassing the intrinsic properties of peptides, the intricacies of peptibody production, and their potential therapeutic applications.
Collapse
Affiliation(s)
- Hamidhossein Khezri
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdiyeh Mostafavi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
R VS, Choudhuri S, Ghosh B. Hybrid Diffusion Model for Stable, Affinity-Driven, Receptor-Aware Peptide Generation. J Chem Inf Model 2024; 64:6912-6925. [PMID: 39193724 DOI: 10.1021/acs.jcim.4c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The convergence of biotechnology and artificial intelligence has the potential to transform drug development, especially in the field of therapeutic peptide design. Peptides are short chains of amino acids with diverse therapeutic applications that offer several advantages over small molecular drugs, such as targeted therapy and minimal side effects. However, limited oral bioavailability and enzymatic degradation have limited their effectiveness. With advances in deep learning techniques, innovative approaches to peptide design have become possible. In this work, we demonstrate HYDRA, a hybrid deep learning approach that leverages the distribution modeling capabilities of a diffusion model and combines it with a binding affinity maximization algorithm that can be used for de novo design of peptide binders for various target receptors. As an application, we have used our approach to design therapeutic peptides targeting proteins expressed by Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) genes. The ability of HYDRA to generate peptides conditioned on the target receptor's binding sites makes it a promising approach for developing effective therapies for malaria and other diseases.
Collapse
Affiliation(s)
- Vishva Saravanan R
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Soham Choudhuri
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Bhaswar Ghosh
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| |
Collapse
|
3
|
Oduro-Kwateng E, Ali M, Kehinde IO, Zhang Z, Soliman MES. De Novo Rational Design of Peptide-Based Protein-Protein Inhibitors (Pep-PPIs) Approach by Mapping the Interaction Motifs of the PP Interface and Physicochemical Filtration: A Case on p25-Cdk5-Mediated Neurodegenerative Diseases. J Cell Biochem 2024; 125:e30633. [PMID: 39148280 DOI: 10.1002/jcb.30633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Protein-protein interactions, or PPIs, are a part of every biological activity and have been linked to a number of diseases, including cancer, infectious diseases, and neurological disorders. As such, targeting PPIs is considered a strategic and vital approach in the development of new medications. Nonetheless, the wide and flat contact interface makes it difficult to find small-molecule PP inhibitors. An alternative strategy would be to use the PPI interaction motifs as building blocks for the design of peptide-based inhibitors. Herein, we designed 12-mer peptide inhibitors to target p25-inducing-cyclin-dependent kinase (Cdk5) hyperregulation, a PPI that has been shown to perpetuate neuroinflammation, which is one of the major causal implications of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and frontotemporal dementia. We generated a library of 5 062 500 peptide combination sequences (PCS) derived from the interaction motif of Cdk5/p25 PP interface. The 20 amino acids were differentiated into six groups, namely, hydrophobic (aliphatic), aromatic, basic, acidic, unique, and polar uncharged, on the basis of their physiochemical properties. To preserve the interaction motif necessary for ideal binding, de novo modeling of all possible peptide sequence substitutions was considered. A set of filters, backed by the Support Vector Machine (SVM) algorithm, was then used to create a shortlisted custom peptide library that met specific bioavailability, toxicity, and therapeutic relevance, leading to a refined library of 15 PCS. A greedy algorithm and coarse-grained force field were used to predict peptide structure and folding before subsequent modeling studies. Molecular docking was performed to estimate the relative binding affinities, and out of the top hits, Pep15 was subjected to molecular dynamics simulations and binding free-energy calculations in comparison to a known peptide inhibitor with experimental data (template peptide). Interestingly, the identified peptide through our protocol, Pep15, was found to show a significantly higher binding affinity than the reference template peptide (-48.10 ± 0.23 kcal/mol and -17.53 ± 0.27 kcal/mol, respectively). In comparison to the template peptide, Pep15 was found to possess a more compact and buried surface area, tighter binding landscape, and reduced conformational variability, leading to enhanced structural and kinetic stability of the Cdk5/p25 complex. Notably, both peptide inhibitors were found to have a minimal impact on the architectural integrity of the Cdk5/p25 secondary structure. Herein, we propose Pep15 as a novel and potentially disruptive peptide drug for Cdk5/p25-mediated neurodegenerative phenotypes that require further clinical investigation. The systematic protocol and findings of this report would serve as a valuable tool in the identification of critical PPI interface reactive residues, designing of analogs, and identification of more potent peptide-based PPI inhibitors.
Collapse
Affiliation(s)
- Ernest Oduro-Kwateng
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| | - Musab Ali
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| | - Ibrahim Oluwatobi Kehinde
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| | - Zhichao Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Mahmoud E S Soliman
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
4
|
Erckes V, Hilleke M, Isert C, Steuer C. PICKAPEP: An application for parameter calculation and visualization of cyclized and modified peptidomimetics. J Pept Sci 2024:e3646. [PMID: 39085168 DOI: 10.1002/psc.3646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 08/02/2024]
Abstract
The interest in peptides and especially in peptidomimetic structures has risen enormously in the past few years. Novel modification strategies including nonnatural amino acids, sophisticated cyclization strategies, and side chain modifications to improve the pharmacokinetic properties of peptides are continuously arising. However, a calculator tool accompanying the current development in peptide sciences towards modified peptides is missing. Herein, we present the application PICKAPEP, enabling the virtual construction and visualization of peptidomimetics ranging from well-known cyclized and modified peptides such as ciclosporin A up to fully self-designed peptide-based structures with custom amino acids. Calculated parameters include the molecular weight, the water-octanol partition coefficient, the topological polar surface area, the number of rotatable bonds, and the peptide SMILES code. To our knowledge, PICKAPEP is the first tool allowing users to add custom amino acids as building blocks and also the only tool giving the possibility to process large peptide libraries and calculate parameters for multiple peptides at once. We believe that PICKAPEP will support peptide researchers in their work and will find wide application in current as well as future peptide drug development processes. PICKAPEP is available open source for Windows and Mac operating systems (https://urldefense.com/v3/__https://www.research-collection.ethz.ch/handle/20.500.11850/681174__;!!N11eV2iwtfs!qt5f_2lNd6IZUDH1HVSVwg0zYzS8-nFazQ8c61jS5GaD5vkVS5C3igyfh3haJRnaX8ugW7o9VWUiCihPqcptmaWoqwYf9LvZTQ$).
Collapse
Affiliation(s)
- Vanessa Erckes
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Laboratory of Pharmaceutical Analytics, ETH Zurich, Zurich, Switzerland
| | - Mattis Hilleke
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Laboratory of Computer-Assisted Drug Design, ETH Zurich, Zurich, Switzerland
| | - Clemens Isert
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Laboratory of Computer-Assisted Drug Design, ETH Zurich, Zurich, Switzerland
| | - Christian Steuer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Laboratory of Pharmaceutical Analytics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Yeffet D, Columbus I, Parvari G, Eichen Y, Saphier S, Ghindes-Azaria L, Redy-Keisar O, Amir D, Drug E, Gershonov E, Binyamin I, Cohen Y, Karton-Lifshin N, Zafrani Y. Addressing the Opioids Lipophilicity Challenge via a Straightforward and Simultaneous 1H NMR-Based log P/ D Determination, Both Separately and in Mixtures. J Med Chem 2024; 67:12399-12409. [PMID: 39013123 DOI: 10.1021/acs.jmedchem.4c01153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
A systematic study of trends in the lipophilicity of prominent representatives of the opioid family, including natural, semisynthetic, synthetic, and endogenous neuropeptide opioids, is described. This was enabled by a straightforward 1H NMR-based logP/D determination method developed for compounds holding at least one aromatic hydrogen atom. Moreover, the new method enables a direct simultaneous logD determination of opioid mixtures, overcoming the high sensitivity of this family to the measurement conditions, which is critical when a determination of the exact ΔlogD values of matched pairs is required. Interpretation of the experimental ΔlogD7.4 values of selected matched pairs, focusing inter alia on the 3-OMe and 14-OMe motifs in morphinan opioids, is suggested with the aid of DFT calculations and may be useful for the discovery of new opioid therapeutics.
Collapse
Affiliation(s)
- Dina Yeffet
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Ishay Columbus
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Galit Parvari
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Yoav Eichen
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Sigal Saphier
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Lee Ghindes-Azaria
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Orit Redy-Keisar
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Dafna Amir
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Eyal Drug
- Department of Analytical Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Eytan Gershonov
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Iris Binyamin
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Yoram Cohen
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Naama Karton-Lifshin
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Yossi Zafrani
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| |
Collapse
|
6
|
Gatto MS, Johnson MP, Najahi-Missaoui W. Targeted Liposomal Drug Delivery: Overview of the Current Applications and Challenges. Life (Basel) 2024; 14:672. [PMID: 38929656 PMCID: PMC11204409 DOI: 10.3390/life14060672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
In drug development, it is not uncommon that an active substance exhibits efficacy in vitro but lacks the ability to specifically reach its target in vivo. As a result, targeted drug delivery has become a primary focus in the pharmaceutical sciences. Since the approval of Doxil® in 1995, liposomes have emerged as a leading nanoparticle in targeted drug delivery. Their low immunogenicity, high versatility, and well-documented efficacy have led to their clinical use against a wide variety of diseases. That being said, every disease is accompanied by a unique set of physiological conditions, and each liposomal product must be formulated with this consideration. There are a multitude of different targeting techniques for liposomes that can be employed depending on the application. Passive techniques such as PEGylation or the enhanced permeation and retention effect can improve general pharmacokinetics, while active techniques such as conjugating targeting molecules to the liposome surface may bring even further specificity. This review aims to summarize the current strategies for targeted liposomes in the treatment of diseases.
Collapse
Affiliation(s)
| | | | - Wided Najahi-Missaoui
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA; (M.S.G.); (M.P.J.)
| |
Collapse
|
7
|
Zeng H, Xu D, Song Y, Tian S, Qiao J, Li Z, Zhao L, Shi H, Zhou Y, Li S, Luo Y, Li J, Miao M, Wu X. Synthesis, characterization and anti-breast cancer activities of stachydrine derivatives. Eur J Med Chem 2023; 259:115679. [PMID: 37517203 DOI: 10.1016/j.ejmech.2023.115679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Stachydrine is a hydrophilic quaternary amine salt with good antitumor effect, but its application is limited due to its rapid metabolism and low bioavailability. We synthesized and evaluated nine prodrugs of stachydrine, which showed suitable hydrophobicity (CLogP: -2.58-4.78, vs SS-0: -3.32) and better in vitro anticancer activity (IC50: 0.34 μM-14.03 mM, vs SS-0: 38.97 mM-147.19 mM) in comparison with stachydrine. Among them, SS-12, SS-16 and SS-18 are the most effective compounds against 4T1 cells, and the IC50 is 2.15-24.14 μM. Especially, compared with stachydrine, SS-12 significantly blocked the cell cycle in the G0/G1 phase, reduced the mitochondrial membrane potential, and induced the apoptosis of 4T1 cells through mitochondria pathway, which increased the expressions of Bax and cleaved caspase-3 protein, decrease the expression of Bcl-2. The pharmacokinetics of SS-12 showed a rational bioavailability (79.6%), and a longer retention time (T1/2 = 7.62 h) than that of stachydrine (T1/2 ≈ 1.16 h) in rats. Compared with stachydrine, SS-12 significantly enhanced the anticancer efficacy (56.32% of tumor-inhibition rates, vs SS-0: 3.89%), meanwhile, ameliorated the tumor-induced organ damage in mice. Therefore, SS-12 may be a promising prodrug of stachydrine against breast cancer.
Collapse
Affiliation(s)
- Huahui Zeng
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Duanjie Xu
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yagang Song
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Shuo Tian
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jingyi Qiao
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhanzhan Li
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Hui Shi
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yueyue Zhou
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Shuo Li
- Joint Institute of Management and Science University, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ying Luo
- Joint Institute of Management and Science University, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jiashi Li
- Joint Institute of Management and Science University, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mingsan Miao
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Xiangxiang Wu
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
8
|
Ogunsile A, Songnaka N, Sawatdee S, Lertcanawanichakul M, Krobthong S, Yingchutrakul Y, Uchiyama J, Atipairin A. Anti-methicillin-resistant Staphylococcus aureus and antibiofilm activity of new peptides produced by a Brevibacillus strain. PeerJ 2023; 11:e16143. [PMID: 37810790 PMCID: PMC10552749 DOI: 10.7717/peerj.16143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) is listed as a highly prioritized pathogen by the World Health Organization (WHO) to search for effective antimicrobial agents. Previously, we isolated a soil Brevibacillus sp. strain SPR19 from a botanical garden, which showed anti-MRSA activity. However, the active substances were still unknown. Methods The cell-free supernatant of this bacterium was subjected to salt precipitation, cation exchange, and reversed-phase chromatography. The antimicrobial activity of pure substances was determined by broth microdilution assay. The peptide sequences and secondary structures were characterized by tandem mass spectroscopy and circular dichroism (CD), respectively. The most active anti-MRSA peptide underwent a stability study, and its mechanism was determined through scanning electron microscopy, cell permeability assay, time-killing kinetics, and biofilm inhibition and eradication. Hemolysis was used to evaluate the peptide toxicity. Results The pure substances (BrSPR19-P1 to BrSPR19-P5) were identified as new peptides. Their minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) against S. aureus and MRSA isolates ranged from 2.00 to 32.00 and 2.00 to 64.00 µg/mL, respectively. The sequence analysis of anti-MRSA peptides revealed a length ranging from 12 to 16 residues accompanied by an amphipathic structure. The physicochemical properties of peptides were predicted such as pI (4.25 to 10.18), net charge at pH 7.4 (-3 to +4), and hydrophobicity (0.12 to 0.96). The CD spectra revealed that all peptides in the water mainly contained random coil structures. The increased proportion of α-helix structure was observed in P2-P5 when incubated with SDS. P2 (NH2-MFLVVKVLKYVV-COOH) showed the highest antimicrobial activity and high stability under stressed conditions such as temperatures up to 100 °C, solution of pH 3 to 10, and proteolytic enzymes. P2 disrupted the cell membrane and caused bacteriolysis, in which its action was dependent on the incubation time and peptide concentration. Antibiofilm activity of P2 was determined by which the half-maximal inhibition of biofilm formation was observed at 2.92 and 4.84 µg/mL for S. aureus TISTR 517 and MRSA isolate 2468, respectively. Biofilm eradication of tested pathogens was found at the P2 concentration of 128 µg/mL. Furthermore, P2 hemolytic activity was less than 10% at concentrations up to 64 µg/mL, which reflected the hemolysis index thresholds of 32. Conclusion Five novel anti-MRSA peptides were identified from SPR19. P2 was the most active peptide and was demonstrated to cause membrane disruption and cell lysis. The P2 activity was dependent on the peptide concentration and exposure time. This peptide had antibiofilm activity against tested pathogens and was compatible with human erythrocytes, supporting its potential use as an anti-MRSA agent in this post-antibiotic era.
Collapse
Affiliation(s)
- Abiodun Ogunsile
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
| | - Nuttapon Songnaka
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
- Drug and Cosmetic Excellence Center, Walailak University, Nakhon Si Thammarat, Thailand
| | - Somchai Sawatdee
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
- Drug and Cosmetic Excellence Center, Walailak University, Nakhon Si Thammarat, Thailand
| | | | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Jumpei Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Apichart Atipairin
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
- Drug and Cosmetic Excellence Center, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
9
|
Morak-Młodawska B, Jeleń M, Martula E, Korlacki R. Study of Lipophilicity and ADME Properties of 1,9-Diazaphenothiazines with Anticancer Action. Int J Mol Sci 2023; 24:ijms24086970. [PMID: 37108135 PMCID: PMC10138389 DOI: 10.3390/ijms24086970] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Lipophilicity is one of the key properties of a potential drug that determines the solubility, the ability to penetrate through cell barriers, and transport to the molecular target. It affects pharmacokinetic processes such as adsorption, distribution, metabolism, excretion (ADME). The 10-substituted 1,9-diazaphenothiazines show promising if not impressive in vitro anticancer potential, which is associated with the activation of the mitochondrial apoptosis pathway connected with to induction BAX, forming a channel in MOMP and releasing cytochrome c for the activation of caspases 9 and 3. In this publication, the lipophilicity of previously obtained 1,9-diazaphenothiazines was determined theoretically using various computer programs and experimentally using reverse-phase thin-layer chromatography (RP-TLC) and a standard curve. The study presents other physicochemical, pharmacokinetic, and toxicological properties affecting the bioavailability of the test compounds. ADME analysis was determined in silico using the SwissADME server. Molecular targets studies were identified in silico using the SwissTargetPrediction server. Lipinski's rule of five, Ghose's, and Veber's rules were checked for the tested compounds, confirming their bioavailability.
Collapse
Affiliation(s)
- Beata Morak-Młodawska
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, The Medical University of SilesiaJagiellońska 4, 41-200 Sosnowiec, Poland
| | - Małgorzata Jeleń
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, The Medical University of SilesiaJagiellońska 4, 41-200 Sosnowiec, Poland
| | - Emilia Martula
- Doctoral School, The Medical University of Silesia, 40-055 Katowice, Poland
| | - Rafał Korlacki
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
10
|
Songnaka N, Lertcanawanichakul M, Hutapea AM, Krobthong S, Yingchutrakul Y, Atipairin A. Purification and Characterization of Novel Anti-MRSA Peptides Produced by Brevibacillus sp. SPR-20. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238452. [PMID: 36500545 PMCID: PMC9738727 DOI: 10.3390/molecules27238452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is listed as a high-priority pathogen because its infection is associated with a high mortality rate. It is urgent to search for new agents to treat such an infection. Our previous study isolated a soil bacterium (Brevibacillus sp. SPR-20), showing the highest antimicrobial activity against S. aureus TISTR 517 and MRSA strains. The present study aimed to purify and characterize anti-MRSA substances produced by SPR-20. The result showed that five active substances (P1-P5) were found, and they were identified by LC-MS/MS that provided the peptide sequences of 14-15 residues. Circular dichroism showed that all peptides contained β-strand and disordered conformations as the major secondary structures. Only P1-P4 adopted more α-helix conformations when incubated with 50 mM SDS. These anti-MRSA peptides could inhibit S. aureus and MRSA in concentrations of 2-32 μg/mL. P1 (NH2-VVVNVLVKVLPPPVV-COOH) had the highest activity and was identified as a novel antimicrobial peptide (AMP). The stability study revealed that P1 was stable in response to temperature, proteolytic enzymes, surfactant, and pH. The electron micrograph showed that P1 induced bacterial membrane damage when treated at 1× MIC in the first hour of incubation. The killing kinetics of P1 was dependent on concentration and time. Mechanisms of P1 on tested pathogens involved membrane permeability, leakage of genetic material, and cell lysis. The P1 peptide at a concentration up to 32 μg/mL showed hemolysis of less than 10%, supporting its safety for human erythrocytes. This study provides promising anti-MRSA peptides that might be developed for effective antibiotics in the post-antibiotic era.
Collapse
Affiliation(s)
- Nuttapon Songnaka
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | | | - Albert M. Hutapea
- Faculty of Science, Universitas Advent Indonesia, Bandung 40559, Indonesia
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yodying Yingchutrakul
- National Omics Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Apichart Atipairin
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80161, Thailand
- Drug and Cosmetics Excellence Center, Walailak University, Nakhon Si Thammarat 80161, Thailand
- Correspondence: ; Tel.: +66-7567-2832; Fax: +66-7567-2814
| |
Collapse
|
11
|
Esposito S, Orsatti L, Pucci V. Subcutaneous Catabolism of Peptide Therapeutics: Bioanalytical Approaches and ADME Considerations. Xenobiotica 2022; 52:828-839. [PMID: 36039395 DOI: 10.1080/00498254.2022.2119180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Many peptide drugs such as insulin and glucagon-like peptide (GLP-1) analogues are successfully administered subcutaneously (SC). Following SC injection, peptides may undergo catabolism in the SC compartment before entering systemic circulation, which could compromise their bioavailability and in turn affect their efficacy.This review will discuss how both technology and strategy have evolved over the past years to further elucidate peptide SC catabolism.Modern bioanalytical technologies (particularly liquid chromatography-high-resolution mass spectrometry) and bioinformatics platforms for data mining has prompted the development of in silico, in vitro and in vivo tools for characterizing peptide SC catabolism to rapidly address proteolytic liabilities and, ultimately, guide the design of peptides with improved SC bioavailability.More predictive models able to recapitulate the interplay between SC catabolism and other factors driving SC absorption are highly desirable to improve in vitro/in vivo correlations.We envision the routine incorporation of in vitro and in vivo SC catabolism studies in ADME screening funnels to develop more effective peptide drugs for SC delivery.
Collapse
|