1
|
Lu H, Qi F, Wang H, He T, Sun B, Gao X, Comstock AH, Gull S, Zhang Y, Qiao T, Shao T, Zheng YX, Sun D, Chen Y, Zhang HL, Tang Z, Long G. Strong Magneto-Chiroptical Effects through Introducing Chiral Transition-Metal Complex Cations to Lead Halide. Angew Chem Int Ed Engl 2024:e202415363. [PMID: 39630104 DOI: 10.1002/anie.202415363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Indexed: 12/14/2024]
Abstract
The interplay between chirality with magnetism can break both the space and time inversion symmetry and have wide applications in information storage, photodetectors, multiferroics and spintronics. Herein, we report the chiral transition-metal complex cation-based lead halide, R-CDPB and S-CDPB. In contrast with the traditional chiral metal halides with organic cations, a novel strategy for chirality transfer from the transition-metal complex cation to the lead halide framework is developed. The chiral complex cations directly participate the band structure and introduce the d-d transitions and tunable magneto-chiroptical effects in both the ultraviolet and full visible range into R-CDPB and S-CDPB. Most importantly, the coupling between magnetic moment of the complex cation and chiroptical properties is confirmed by the magneto-chiral dichroism. For the band-edge transition, the unprecedented modulation of +514 % for S-CDPB and -474 % for R-CDPB was achieved at -1.3 Tesla. Our findings demonstrate a novel strategy to combine chirality with magnetic moment, and provide a versatile material platform towards magneto-chiroptical and chiro-spintronic applications.
Collapse
Affiliation(s)
- Haolin Lu
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Fenglian Qi
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hebin Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tengfei He
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Bing Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoqing Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Andrew H Comstock
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Sehrish Gull
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Yunxin Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tianjiao Qiao
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tianyin Shao
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dali Sun
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhiyong Tang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guankui Long
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| |
Collapse
|
2
|
Wang CF, Yang Y, Hu Y, Ma C, Ni HF, Liu PG, Lu HF, Zhang ZX, Wang J, Zhang Y, Fu DW, Zhao K, Zhang Y. Exploring Aqueous Solution-Processed Pseudohalide Rare-Earth Double Perovskite Ferroelectrics toward X-Ray Detection with High Sensitivity. Angew Chem Int Ed Engl 2024; 63:e202413726. [PMID: 39207278 DOI: 10.1002/anie.202413726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Three-dimensional (3D) pseudohalide rare-earth double perovskites (PREDPs) have garnered significant attention for their versatile physical properties, including ferroelectricity, ferroelasticity, large piezoelectric responses, and circularly polarized luminescence. However, their potential for X-ray detection remains unexplored, and the low Curie temperature (TC) limits the performance window for PREDP ferroelectrics. Here, by applying the chemical regulation strategies involving halogen substitution on the organic cation and Rb/Cs substitution to the PREDP [(R)-M3HQ]2RbEu(NO3)6 [(R)-M3HQ=(R)-N-methyl-3-hydroxylquinuclidinium] with a low TC of 285 K, a novel 3D PREDP ferroelectric [(R)-CM3HQ]2CsEu(NO3)6 [(R)-CM3HQ=(R)-N-chloromethyl-3-hydroxylquinuclidinium] are successfully synthesized, for which the TC reaches 344 K. More importantly, such a strategy endowed [(R)-CM3HQ]2CsEu(NO3)6 with notable X-ray detection capabilities. Centimeter-sized [(R)-CM3HQ]2CsEu(NO3)6 single crystals fabricated from aqueous solutions demonstrated a sensitivity of 1307 μC Gyair -1 cm-2 and a low detectable dose rate of 152 nGyair s-1, the highest sensitivity reported for hybrid double perovskite ferroelectric detectors. This work positions PREDPs as promising candidates for the next generation of eco-friendly optoelectronic materials and also offers substantial insights into the interaction between structure, composition, and functionality in ferroelectric materials.
Collapse
Affiliation(s)
- Chang-Feng Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Ye Yang
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials School of Materials Science and Engineering., Shaanxi Normal University, 710119, Xi'an, People's Republic of China
| | - Yu Hu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Chuang Ma
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials School of Materials Science and Engineering., Shaanxi Normal University, 710119, Xi'an, People's Republic of China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Pei-Guo Liu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 010021, Hohhot, People's Republic of China
| | - Yujian Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials School of Materials Science and Engineering., Shaanxi Normal University, 710119, Xi'an, People's Republic of China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| |
Collapse
|
3
|
Xiao Y, Shi A, Yang G, Yu Y, Nie Q, Qi S, Xiang C, Zhang T. Induced Circularly Polarized Luminescence From 0D Quantum Dots by 2D Chiral Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404913. [PMID: 39235369 DOI: 10.1002/smll.202404913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Materials with circularly polarized luminescence (CPL) exhibit great application potential in biological scenes such as cell imaging, optical probes, etc. However, most developed materials are non-aqueous and toxic, which seriously restricts their compatibility with the life systems. Thus, it is necessary to explore a water-based CPL system with high biocompatibility so that to promote the biologic application process. Herein, a facile and efficient route to achieve the CPL properties of a functional aqueous solution is demonstrated by the combination of 0D quantum dots (QDs) and 2D chiral nanosheets. Benefited by the specific absorption ability of nanosheets for left/right-handed CPL, the QDs adsorbed onto the surface of nanosheets through hydrogen bond interactions showed apparent CPL features. In addition, this system has a good extensibility as the CPL property can be effectively regulated by changing the kind of emissive QDs. More importantly, this water-based nano-composite with facile fabrication process (one-step mixing) is suitable for the real applications, which is undoubtedly beneficial for the further progress of functional CPL materials.
Collapse
Affiliation(s)
- Yuqi Xiao
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Aiyan Shi
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
| | - Guojian Yang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
| | - Yang Yu
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314001, P. R. China
| | - Quan Nie
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shuyan Qi
- Institute of Biomedical Engineering, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Chaoyu Xiang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ting Zhang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
4
|
Jia QQ, Teri G, Luo JQ, Ni HF, Huang PZ, Lun MM, Zhang ZX, Zhang Y, Fu DW. Experimental Observation of the Fully Ferroelectric-Fully Ferroelastic Effect in Multiferroic Hybrid Perovskites. J Am Chem Soc 2024. [PMID: 39034829 DOI: 10.1021/jacs.4c06929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Since the concept of "multiferroic" was first proposed in 1968, the coupling effect between different ferroic orders has attracted great interest in energy, information, and biomedical fields. However, the fully ferroelectric-fully ferroelastic effect has never been experimentally observed in hybrid perovskites, even though this effect was predicted to exist half a century ago. Realizing such cross-linking effects of polarization vectors and strain tensors has always been a huge challenge because of the complex difference in these two ferroic origins. Here, we report a multiferroic with full ferroelectricity and full ferroelasticity in two-dimensional (2D) hybrid perovskites based on ferroelectrochemistry. The dynamic molecular reorientations endow (cyclohexanemethylaminium)2PbCl4 with a desired symmetry change of 4̅2mFmm2 at a Curie temperature of 411.8 K. More strikingly, the switchable evolution of ferroelastic domains was directly observed under the control of either electric or mechanical fields, which is the first experimental observation of a fully ferroelectric-fully ferroelastic effect in hybrid perovskites. This work would provide new insights into understanding the intrinsic cross-linking mechanism between ferroelectricity and ferroelasticity toward the development of multichannel interactive microelectronic devices.
Collapse
Affiliation(s)
- Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Gele Teri
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Jia-Qi Luo
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Meng-Meng Lun
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China
| | - Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
5
|
Zou QH, Wang ZJ, Wu LK, Feng Y, Jiang LL, Li JR, Ye HY, Shi C. Three-Dimensional Bimetallic Ammonium K-Eu Nitrate with a Rare (6,6)-Connected Ion Topology Exhibiting Structural Phase Transition and Photoluminescence Properties. Inorg Chem 2024; 63:10817-10822. [PMID: 38781577 DOI: 10.1021/acs.inorgchem.4c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A K-Eu bimetallic ammonium metal-nitrate three-dimensional (3D) framework incorporating R-N-methyl-3-hydroxyquinuclidine, (RM3HQ)2KEu(NO3)6 (RM3HQ = R-N-methyl-3-hydroxyquinuclidine, 1), was characterized and reported. Distinguishing from the former hybrid rare-earth double perovskites, 1 adopts a mixed corner- and face-sharing K+/Eu3+-centered polyhedral connectivity to form a 3D inorganic framework, showing a rare (6, 6)-connected ion topology with a 66 framework. Notably, 1 exhibits clear phase transition, and the switchable thermodynamic behavior is confirmed by variable-temperature dielectric measurements and second-harmonic generation response. Moreover, 1 also shows photoluminescence properties. The activator Eu3+ plays a crucial role in this process, leading to a significant narrow emission at 592 nm with a photoluminescence quantum yield (PLQY) of 20.76%. The fluorescence lifetime (FLT) of 1 is 4.32 ms. This finding enriches the bimetallic hybrid system for potential electronic and/or luminescence applications.
Collapse
Affiliation(s)
- Qing-Hua Zou
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 330000, China
| | - Ze-Jie Wang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 330000, China
| | - Ling-Kun Wu
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 330000, China
| | - Yan Feng
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 330000, China
| | - Lu-Lu Jiang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 330000, China
| | - Jian-Rong Li
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 330000, China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 330000, China
| | - Chao Shi
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 330000, China
| |
Collapse
|
6
|
Liu Y, Gao X, Zhao B, Deng J. Circularly polarized luminescence in quantum dot-based materials. NANOSCALE 2024; 16:6853-6875. [PMID: 38504609 DOI: 10.1039/d4nr00644e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Quantum dots (QDs) have emerged as fantastic luminescent nanomaterials with significant potential due to their unique photoluminescence properties. With the rapid development of circularly polarized luminescence (CPL) materials, many researchers have associated QDs with the CPL property, resulting in numerous novel CPL-active QD-containing materials in recent years. The present work reviews the latest advances in CPL-active QD-based materials, which are classified based on the types of QDs, including perovskite QDs, carbon dots, and colloidal semiconductor QDs. The applications of CPL-active QD-based materials in biological, optoelectronic, and anti-counterfeiting fields are also discussed. Additionally, the current challenges and future perspectives in this field are summarized. This review article is expected to stimulate more unprecedented achievements based on CPL-active QD-based materials, thus further promoting their future practical applications.
Collapse
Affiliation(s)
- Yanze Liu
- Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaobin Gao
- Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Biao Zhao
- Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jianping Deng
- Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
Jia QQ, Lu HF, Luo JQ, Zhang YY, Ni HF, Zhang FW, Wang J, Fu DW, Wang CF, Zhang Y. Organic-Inorganic Rare-Earth Double Perovskite Ferroelectric with Large Piezoelectric Response and Ferroelasticity for Flexible Composite Energy Harvesters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306989. [PMID: 38032164 DOI: 10.1002/smll.202306989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/11/2023] [Indexed: 12/01/2023]
Abstract
Hybrid organic-inorganic perovskite (HOIP) ferroelectric materials have great potential for developing self-powered electronic transducers owing to their impressive piezoelectric performance, structural tunability and low processing temperatures. Nevertheless, their inherent brittle and low elastic moduli limit their application in electromechanical conversion. Integration of HOIP ferroelectrics and soft polymers is a promising solution. In this work, a hybrid organic-inorganic rare-earth double perovskite ferroelectric, [RM3HQ]2RbPr(NO3)6 (RM3HQ = (R)-N-methyl-3-hydroxylquinuclidinium) is presented, which possesses multiaxial nature, ferroelasticity and satisfactory piezoelectric properties, including piezoelectric charge coefficient (d33) of 102.3 pC N-1 and piezoelectric voltage coefficient (g33) of 680 × 10-3 V m N-1. The piezoelectric generators (PEG) based on composite films of [RM3HQ]2RbPr(NO3)6@polyurethane (PU) can generate an open-circuit voltage (Voc) of 30 V and short-circuit current (Isc) of 18 µA, representing one of the state-of-the-art PEGs to date. This work has promoted the exploration of new HOIP ferroelectrics and their development of applications in electromechanical conversion devices.
Collapse
Affiliation(s)
- Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Jia-Qi Luo
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Ying-Yu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Feng-Wen Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P.R. China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Chang-Feng Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| |
Collapse
|
8
|
Wang N, Yue ZY, Li HK, Liu SS, Miao LP, Ye HY, Shi C. Ferroelectricity and Related Properties of Nitratecadmate(II) Hybrid with Metal-Vacancy. Chemistry 2024; 30:e202303758. [PMID: 38052720 DOI: 10.1002/chem.202303758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
All crystals are not ideal, and many of their properties are often determined not by the regular arrangement of atoms, but by the irregular arrangement of crystal defects. Many properties of materials can be controlled effectively by proper use of solid defects. By substitution of NH4 + ion of a hexagonal perovskite structure (H2 dabco)(NH4 )(NO3 )3 (dabco=1,4-diazabicyclo[2.2.2]octane, 1) with Cd2+ ion, we obtained a new metal-vacancy compound (H2 dabco)2 Cd(H2 O)2 (NO3 )6 (2). It exhibits a ferroelectric-paraelectric phase transition at 261 K. A comparison of the various-temperature single-crystal structures indicates that the coordination twist of Cd2+ ion leads to instability of the lattices and excellent ferroelectricity. These findings reveal that the vacancy can be utilized as an element to produce ferroelectricity and may start the chemistry of metal-vacancy coordination compounds. These findings reveals that the vacancy can be utilized as an effective means to tune the symmetry and produce ferroelectricity.
Collapse
Affiliation(s)
- Na Wang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Zhi-Yuan Yue
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Hua-Kai Li
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Shan-Shan Liu
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Le-Ping Miao
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Chao Shi
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| |
Collapse
|
9
|
Li S, Pei H, He S, Liang H, Guo R, Liu N, Mo Z. Chiral Carbon Dots and Chiral Carbon Dots with Circularly Polarized Luminescence: Synthesis, Mechanistic Investigation and Applications. Chem Asian J 2023; 18:e202300770. [PMID: 37819766 DOI: 10.1002/asia.202300770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Chiral carbon dots (CCDs) can be widely used in various fields such as chiral recognition, chiral catalysis and biomedicine because of their unique optical properties, low toxicity and good biocompatibility. In addition, CCDs with circularly polarized luminescence (CPL) can be synthesized, thus broadening the prospects of CCDs applications. Since the research on CCDs is still in its infancy, this paper reviews the chiral origin, formation mechanism, chiral evolution, synthesis and emerging applications of CCDs, with a special focus on CCDs with CPL activity. It is hoped that it will provide some reference to solve the current problems faced by CCDs. Finally, the opportunities and challenges of the current research on CCDs are described, and their future development trends have also been prospected.
Collapse
Affiliation(s)
- Shijing Li
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Hebing Pei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Simin He
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Hao Liang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
10
|
Zhang H, Li QL, Tan YH, Tang YZ, Fan XW, Luo JL, Wang FX, Wan MY. High-Temperature Ferroelasticity and Photoluminescence in a 2D Monolayer Perovskite Compound: (C 5NH 8Br) 2PbBr 4. Inorg Chem 2023. [PMID: 37366025 DOI: 10.1021/acs.inorgchem.3c01552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Hybrid organic-inorganic perovskites (HOIPs) have attracted much attention due to their excellent properties and easy synthesis. As far as we know, most documented ferroelastics mainly focus on the 3D (three-dimensional) perovskites, the 2D monolayer perovskite ferroelastics are rarely reported before. In this work, we synthesized a 2D lead-based perovskite (C5NH13Br)2PbBr4 (1) (C5NH13Br = 5-bromoamylamine cation) by introducing flexible chain organic cations. The evolution of ferroelastic domains observed by a polarized light microscope confirms that compound 1 undergoes a ferroelastic phase transition at 392/384 K. In addition, its direct band gap is 2.877 eV. Interestingly, the material emits an attractive blue light (quantum yield 5.06%) under UV light. Three structural descriptors are introduced to quantitatively analyze the relationship between structural distortion and the shape of emission peak. This work provides a way to design multifunctional perovskite-type materials.
Collapse
Affiliation(s)
- Hao Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Ganzhou, Jiangxi 341000, China
| | - Qing-Lian Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Ganzhou, Jiangxi 341000, China
| | - Yu-Hui Tan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Ganzhou, Jiangxi 341000, China
| | - Yun-Zhi Tang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Ganzhou, Jiangxi 341000, China
| | - Xiao-Wei Fan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Ganzhou, Jiangxi 341000, China
| | - Jin-Lin Luo
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Ganzhou, Jiangxi 341000, China
| | - Fang-Xin Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Ganzhou, Jiangxi 341000, China
| | - Ming-Yang Wan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
11
|
Ying TT, Wan MY, Wang FX, Zhang Y, Tang YZ, Tan YH, Liao J, Wang LJ. High-T c 1D Phase-Transition Semiconductor Photoluminescent Material with Broadband Emission. Chemistry 2023; 29:e202203893. [PMID: 36579748 DOI: 10.1002/chem.202203893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 12/30/2022]
Abstract
One dimensional (1D) organic-inorganic halide hybrid perovskites have the advantages of excellent organic cation modifiability and diversity of inorganic framework structures, which cannot be ignored in the development of multi-functional phase-transition materials in photoelectric and photovoltaic devices. Here, we have successfully modified and synthesized an organic-inorganic hybrid perovskite photoelectric multifunctional phase-transition material: [C7 H13 ONCH2 F]⋅PbBr3 (1). The synergistic effect of the order double disorder transition of organic cations and the change of the degree of distortion of the inorganic framework leads to its high temperature reversible phase-transition point of Tc =374 K/346 K and its ultra-low loss high-quality dielectric switch response. Through in-depth research and calculation, compound 1 also has excellent semiconductor characteristics with a band gap of 3.06 eV and the photoluminescence characteristics of self-trapped exciton (STE) broadband emission. Undoubtedly, this modification strategy provides a new choice for the research field of organic-inorganic hybrid perovskite reversible phase-transition photoelectric multifunctional materials with rich coupling properties.
Collapse
Affiliation(s)
- Ting-Ting Ying
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, China
| | - Ming-Yang Wan
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, China
| | - Fang-Xin Wang
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, China
| | - Yu Zhang
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, China
| | - Yun-Zhi Tang
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, China
| | - Yu-Hui Tan
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, China
| | - Juan Liao
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, China
| | - Li-Juan Wang
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, China
| |
Collapse
|
12
|
Tao L, Zhan H, Cheng Y, Qin C, Wang L. Enhanced Circularly Polarized Photoluminescence of Chiral Perovskite Films by Surface Passivation with Chiral Amines. J Phys Chem Lett 2023; 14:2317-2322. [PMID: 36847471 DOI: 10.1021/acs.jpclett.3c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hybrid organic-inorganic perovskites have shown promise in circularly polarized light source applications when chirality has been introduced. Circularly polarized photoluminescence (CPL) is a significant tool for investigating the chiroptical properties of perovskites. However, further research is still urgently needed, especially with regard to optimization. Here we demonstrate that chiral ligands can influence the electronic structure of perovskites, increasing the asymmetry and emitting circularly polarized photons in photoluminescence. After the modification of chiral amines, the defects of films are passivated, leading to enhanced radiation recombination for which more circularly polarized photons are emitted. Meanwhile, the modification increases the asymmetry in the electronic structure of perovskites, manifested by an increase in the magnetic dipole moment from 0.166 to 0.257 μB and an enhanced CPL signal. This approach offers the possibility of fabricating and refining circularly polarized light-emitting diodes.
Collapse
Affiliation(s)
- Lutao Tao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongmei Zhan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yanxiang Cheng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Chuanjiang Qin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
13
|
Ni HF, Ye LK, Zhuge PC, Hu BL, Lou JR, Su CY, Zhang ZX, Xie LY, Fu DW, Zhang Y. A nickel(ii)-based one-dimensional organic-inorganic halide perovskite ferroelectric with the highest Curie temperature. Chem Sci 2023; 14:1781-1786. [PMID: 36819861 PMCID: PMC9930933 DOI: 10.1039/d2sc05857j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Organic-inorganic halide perovskites (OIHPs) are very eye-catching due to their chemical tunability and rich physical properties such as ferroelectricity, magnetism, photovoltaic properties and photoluminescence. However, no nickel-based OIHP ferroelectrics have been reported so far. Here, we designed an ABX3 OIHP ferroelectric (3-pyrrolinium)NiCl3, where the 3-pyrrolinium cations are located on the voids surrounded by one-dimensional chains composed of NiCl6-face-sharing octahedra via hydrogen bonding interactions. Such a unique structure enables the (3-pyrrolinium)NiCl3 with a high spontaneous polarization (P s) of 5.8 μC cm-2 and a high Curie temperature (T c) of 428 K, realizing dramatic enhancement of 112 and 52 K compared to its isostructural (3-pyrrolinium)MCl3 (M = Cd, Mn). To our knowledge, remarkably, (3-pyrrolinium)NiCl3 should be the first case of nickel(ii)-based OIHP ferroelectric to date, and its T c of 428 K (35 K above that of BaTiO3) is the highest among all reported one-dimensional OIHP ferroelectrics. This work offers a new structural building block for enriching the family of OIHP structures and will inspire the further exploration of new nickel(ii)-based OIHP ferroelectrics.
Collapse
Affiliation(s)
- Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Lou-Kai Ye
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Peng-Cheng Zhuge
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Bo-Lan Hu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Jia-Rui Lou
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Chang-Yuan Su
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Zhi-Xu Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Li-Yan Xie
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| |
Collapse
|
14
|
Lin JH, Lou JR, Ye LK, Hu BL, Zhuge PC, Fu DW, Su CY, Zhang Y. Halogen Engineering To Realize Regulable Multipolar Axes, Nonlinear Optical Response, and Piezoelectricity in Plastic Ferroelectrics. Inorg Chem 2023; 62:2870-2876. [PMID: 36706461 DOI: 10.1021/acs.inorgchem.2c04295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Compared with uniaxial molecular ferroelectrics, multiaxial ferroelectrics have better application prospects because they are no longer subject to the single-crystal form and have been pursued in recent years. Halogen engineering refers to the adjustment of halogens in materials at the atomic level, which can not only explore multiaxial ferroelectrics but also help to improve piezoelectrics, recently. In this work, we successfully synthesized and characterized three multiaxial plastic ferroelectrics through the precise molecular design from I to Cl, confirming the increase of the number of polar axes of ferroelectrics from 3 to 6, the increase of second-harmonic generation density from 2.1 times to nearly 6 times of monopotassium phosphate, and the increase of piezoelectric coefficient by 140%. This systematic work has proved that halogen engineering can not only enrich the family of multiaxial plastic ferroelectrics but also promote the further development of nonlinear optical and piezoelectric materials.
Collapse
Affiliation(s)
- Jia-He Lin
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jia-Rui Lou
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Lou-Kai Ye
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Bo-Lan Hu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Peng-Cheng Zhuge
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Chang-Yuan Su
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China.,Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China.,Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
15
|
Enantiomeric hybrid high-temperature multiaxial ferroelectrics with a narrow bandgap and high piezoelectricity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|