1
|
Wang C, Xin Y, Gu H, Ye L, Liu Y, Zhou Y, Deng Y, Geng Y. An n-Doping Cross-Linkable Quinoidal Compound as an Electron Transport Material for Fully Stretchable Inverted Organic Solar Cells. Angew Chem Int Ed Engl 2024:e202415440. [PMID: 39257370 DOI: 10.1002/anie.202415440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/12/2024]
Abstract
The photocatalytic activity and inherent brittleness of ZnO, which is commonly used as an electron transport layer (ETL) in inverted organic solar cells (OSCs), have impeded advancements in device stability and the development of fully stretchable OSCs. In this study, an intrinsically stretchable ETL for inverted OSCs through a side-chain cross-linking strategy has been developed. Specifically, cross-linking between bromine atoms on the side chains of a quinoidal compound and the amino groups in polyethylenimine resulted in a film, designated QBr-PEI-50, with high electrical conductivity (0.049 S/m) and excellent stretchability (crack-onset strain>45 %). When used as the ETL in inverted OSCs, QBr-PEI-50 was markedly superior to ZnO in terms of device performance and stability, yielding a power conversion efficiency (PCE) of 18.27 % and a T80 lifetime exceeding 10000 h. Moreover, incorporation of QBr-PEI-50 in fully stretchable inverted OSCs yielded a PCE of 14.01 %, and 80 % of the initial PCE was maintained after 21 % strain, showcasing its potential for wearable electronics.
Collapse
Affiliation(s)
- Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yufei Xin
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P.R. China
| | - Haoran Gu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Long Ye
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P.R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
2
|
Xu Z, Meitzner R, Anand A, Djoumessi AS, Stumpf S, Neumann C, Turchanin A, Müller FA, Schubert US, Hoppe H. Dual-Use Self-Assembled Monolayer Controlling Charge Carrier Extraction in Organic Solar Cells. SMALL METHODS 2024; 8:e2301451. [PMID: 38161249 DOI: 10.1002/smtd.202301451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Indexed: 01/03/2024]
Abstract
The development and use of interface materials are essential to the continued advancement of organic solar cells (OSCs) performance. Self-assembled monolayer (SAM) materials have drawn attention because of their simple structure and affordable price. Due to their unique properties, they may be used in inverted devices as a modification layer for modifying ZnO or as a hole transport layer (HTL) in place of typical poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) in conventional devices. In this work, zinc oxide (ZnO) is modified using five structurally similar SAM materials. This resulted in a smoother surface, a decrease in work function, a suppression of charge recombination, and an increase in device efficiency and photostability. In addition, they can introduced asfor hole extraction layer between the active layer and MoO3, enabling the use of the same material at several functional layers in the same device. Through systematic orthogonal evaluation, it is shown that some SAM/active layer/SAM combinations still offered device efficiencies comparable to ZnO/SAM, but with improved device' photostability. This study may provide recommendations for future SAM material's design and development as well as a strategy for boosting device performance by using the same material across both sides of the photoactive layer in OSCs.
Collapse
Affiliation(s)
- Zhuo Xu
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Rico Meitzner
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
- Helmholtz-Zentrum Berlin GmbH, Hahn-Meitner Platz 1, 14109, Berlin, Germany
| | - Aman Anand
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Aurelien Sokeng Djoumessi
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Steffi Stumpf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Christof Neumann
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstrasse 10, 07743, Jena, Germany
- Abbe Center of Photonics, Albert-Einstein-Strasse 6, 07745, Jena, Germany
| | - Andrey Turchanin
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstrasse 10, 07743, Jena, Germany
- Abbe Center of Photonics, Albert-Einstein-Strasse 6, 07745, Jena, Germany
| | - Frank A Müller
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Otto-Schott-Institute of Materials Research (OSIM), Friedrich-Schiller-University of Jena, Löbdergraben 32, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Harald Hoppe
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
3
|
Nugraha MI, Ling Z, Aniés F, Ardhi REA, Gedda M, Naphade D, Tsetseris L, Heeney M, Anthopoulos TD. Over 19% Efficient Inverted Organic Photovoltaics Featuring a Molecularly Doped Metal Oxide Electron-Transporting Layer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310933. [PMID: 38949017 DOI: 10.1002/adma.202310933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/11/2024] [Indexed: 07/02/2024]
Abstract
Molecular doping is commonly utilized to tune the charge transport properties of organic semiconductors. However, applying this technique to electrically dope inorganic materials like metal oxide semiconductors is challenging due to the limited availability of molecules with suitable energy levels and processing characteristics. Herein, n-type doping of zinc oxide (ZnO) films is demonstrated using 1,3-dimethylimidazolium-2-carboxylate (CO2-DMI), a thermally activated organic n-type dopant. Adding CO2-DMI into the ZnO precursor solution and processing it atop a predeposited indium oxide (InOx) layer yield InOx/n-ZnO heterojunctions with increased electron field-effect mobility of 32.6 cm2 V-1 s-1 compared to 18.5 cm2 V-1 s-1 for the pristine InOx/ZnO bilayer. The improved electron transport originates from the ZnO's enhanced crystallinity, reduced hydroxyl concentrations, and fewer oxygen vacancy groups upon doping. Applying the optimally doped InOx/n-ZnO heterojunctions as the electron-transporting layers (ETLs) in organic photovoltaics (OPVs) yields cells with improved power conversion efficiency of 19.06%, up from 18.3% for devices with pristine ZnO, and 18.2% for devices featuring the undoped InOx/ZnO ETL. It is shown that the all-around improved OPV performance originates from synergistic effects associated with CO2-DMI doping of the thermally grown ZnO, highlighting its potential as an electronic dopant for ZnO and potentially other metal oxides.
Collapse
Affiliation(s)
- Mohamad Insan Nugraha
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), South Tangerang, Banten, 15314, Indonesia
| | - Zhaoheng Ling
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Filip Aniés
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Ryanda Enggar Anugrah Ardhi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Murali Gedda
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Dipti Naphade
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Leonidas Tsetseris
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 9 Heroon Polytechniou Street, Zografou Campus, Athens, GR-15780, Greece
| | - Martin Heeney
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia
- Henry Royce Institute and Photon Science Institute, Department of Electrical and Electronic Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
4
|
Han P, Zhang Y. Recent Advances in Carbazole-Based Self-Assembled Monolayer for Solution-Processed Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405630. [PMID: 38940073 DOI: 10.1002/adma.202405630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/02/2024] [Indexed: 06/29/2024]
Abstract
Self-assembled molecules (SAMs) have shown great potential in the application of optoelectronic devices due to their unique molecular properties. Recently, emerging phosphonic acid-based SAMs, 2-(9Hcarbazol-9-yl)ethyl]phosphonic acid (2PACz), have successfully applied in perovskite solar cells (PSCs), organic solar cells (OSCs) and perovskite light emitting diodes (PeLEDs). More importantly, impressive results based on 2PACz SAMs are reported recently in succession. Therefore, it is essential to provide an insightful summary to promote it further development. In this review, the molecule design strategies about 2PACz are first concluded. Subsequently, this work systematically reviews the recent advances of 2PACz and its derivatives for single junction PSCs, tandem PSCs, OSCs and PeLEDs. Finally, this work concludes and discusses future challenges for 2PACz and its derivatives to further develop in optoelectronic devices.
Collapse
Affiliation(s)
- Peng Han
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yong Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
5
|
Gkeka D, Hamilton I, Stavridis T, Liu Z, Faber H, Naphade D, Marčinskas M, Malinauskas T, Harrison G, Adilbekova B, Maksudov T, Yuan Y, Kaltsas D, Tsetseris L, Getautis V, Lanza M, Patsalas P, Fatayer S, Anthopoulos TD. Tuning Hole-Injection in Organic-Light Emitting Diodes with Self-Assembled Monolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39728-39736. [PMID: 39024545 DOI: 10.1021/acsami.4c08088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Improving hole injection through the surface modification of indium tin oxide (ITO) with self-assembled monolayers (SAMs) is a promising method for modulating the carrier injection in organic light-emitting diodes (OLEDs). However, developing SAMs with the required characteristics remains a daunting challenge. Herein, we functionalize ITO with various phosphonic acid SAMs and evaluate the SAM-modified anodes in terms of their work function (WF), molecular distribution, coverage, and electrical conductivity. We fabricate and characterize green phosphorescent SAM-based OLEDs and compared their performance against devices based on the conventional poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) hole-injection layer. We find that the usage of [2-(3,6-diiodo-9H-carbazol-9-yl)ethyl]phosphonic acid (I-2PACz) SAM yields devices with superior performance characteristics, including a maximum luminance of ∼57,300 cd m-2 and external quantum efficiency of up to ∼17%. This improvement is attributed to synergistic factors, including the deep WF of ITO/I-2PACz (5.47 eV), the formation of larger I-2PACz molecular clusters, and the intrinsic I-2PACz dipole, that collectively enhance hole-injection.
Collapse
Affiliation(s)
- Despoina Gkeka
- KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Materials Science and Engineering Program, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Iain Hamilton
- KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Thalis Stavridis
- Department of Physics, Aristotle University, Thessaloniki GR-54124, Greece
| | - Zhongzhe Liu
- KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Applied Program, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Hendrik Faber
- KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Dipti Naphade
- KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mantas Marčinskas
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania
| | - Tadas Malinauskas
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania
| | - George Harrison
- KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Begimai Adilbekova
- KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Materials Science and Engineering Program, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Temur Maksudov
- KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Materials Science and Engineering Program, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Yuan
- Materials Science and Engineering Program, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Dimitrios Kaltsas
- School of Applied Mathematical and Physical Sciences, Department of Physics, National Technical University of Athens, Athens 15780, Greece
| | - Leonidas Tsetseris
- School of Applied Mathematical and Physical Sciences, Department of Physics, National Technical University of Athens, Athens 15780, Greece
| | - Vytautas Getautis
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania
| | - Mario Lanza
- Materials Science and Engineering Program, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Panos Patsalas
- Department of Physics, Aristotle University, Thessaloniki GR-54124, Greece
| | - Shadi Fatayer
- KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Applied Program, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Thomas D Anthopoulos
- KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Henry Royce Institute and Photon Science Institute, Department of Electrical and Electronic Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
6
|
Xin Y, Liu H, Dong X, Xiao Z, Wang R, Gao Y, Zou Y, Kan B, Wan X, Liu Y, Chen Y. Multiarmed Aromatic Ammonium Salts Boost the Efficiency and Stability of Inverted Organic Solar Cells. J Am Chem Soc 2024; 146:3363-3372. [PMID: 38265366 DOI: 10.1021/jacs.3c12605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Inverted organic solar cells (OSCs) have attracted much attention because of their outstanding stability, with zinc oxide (ZnO) being commonly used as the electron transport layer (ETL). However, both surface defects and the photocatalytic effect of ZnO could lead to serious photodegradation of acceptor materials. This, in turn, hampers the improvement of the efficiency and stability in OSCs. Herein, we developed a multiarmed aromatic ammonium salt, namely, benzene-1,3,5-triyltrimethanaminium bromide (PhTMABr), for modifying ZnO. This compound possesses mild weak acidity aimed at removing the residual amines present within ZnO film. In addition, the PhTMABr could also passivate surface defects of ZnO through multiple hydrogen-bonding interactions between its terminal amino groups and the oxygen anion of ZnO, leading to a better interface contact, which effectively enhances charge transport. As a result, an efficiency of 18.75% was achieved based on the modified ETL compared to the bare ZnO (PCE = 17.34%). The devices utilizing the modified ZnO retained 87% and 90% of their initial PCE after thermal stress aging at 65 °C for 1500 h and continuous 1-sun illumination with maximum power point (MPP) tracking for 1780 h, respectively. Importantly, the extrapolated T80 lifetime with MPP tracking exceeds 10 000 h. The new class of materials employed in this work to modify the ZnO ETL should pave the way for enhancing the efficiency and stability of OSCs, potentially advancing their commercialization process.
Collapse
Affiliation(s)
- Yufei Xin
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hang Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiyue Dong
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zheng Xiao
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rui Wang
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuping Gao
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Zou
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Xiangjian Wan
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Wu J, Ling Z, Franco LR, Jeong SY, Genene Z, Mena J, Chen S, Chen C, Araujo CM, Marchiori CFN, Kimpel J, Chang X, Isikgor FH, Chen Q, Faber H, Han Y, Laquai F, Zhang M, Woo HY, Yu D, Anthopoulos TD, Wang E. On the Conformation of Dimeric Acceptors and Their Polymer Solar Cells with Efficiency over 18 . Angew Chem Int Ed Engl 2023; 62:e202302888. [PMID: 37380618 DOI: 10.1002/anie.202302888] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
The determination of molecular conformations of oligomeric acceptors (OAs) and their impact on molecular packing are crucial for understanding the photovoltaic performance of their resulting polymer solar cells (PSCs) but have not been well studied yet. Herein, we synthesized two dimeric acceptor materials, DIBP3F-Se and DIBP3F-S, which bridged two segments of Y6-derivatives by selenophene and thiophene, respectively. Theoretical simulation and experimental 1D and 2D NMR spectroscopic studies prove that both dimers exhibit O-shaped conformations other than S- or U-shaped counter-ones. Notably, this O-shaped conformation is likely governed by a distinctive "conformational lock" mechanism, arising from the intensified intramolecular π-π interactions among their two terminal groups within the dimers. PSCs based on DIBP3F-Se deliver a maximum efficiency of 18.09 %, outperforming DIBP3F-S-based cells (16.11 %) and ranking among the highest efficiencies for OA-based PSCs. This work demonstrates a facile method to obtain OA conformations and highlights the potential of dimeric acceptors for high-performance PSCs.
Collapse
Affiliation(s)
- Jingnan Wu
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - Zhaoheng Ling
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Leandro R Franco
- Department of Engineering and Physics, Karlstad University, 65188, Karlstad, Sweden
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 02841 (Republic of, Korea
| | - Zewdneh Genene
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Josué Mena
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Si Chen
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - C Moyses Araujo
- Department of Engineering and Physics, Karlstad University, 65188, Karlstad, Sweden
- Materials Theory Division, Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden
| | - Cleber F N Marchiori
- Department of Engineering and Physics, Karlstad University, 65188, Karlstad, Sweden
| | - Joost Kimpel
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Xiaoming Chang
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Furkan H Isikgor
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Qiaonan Chen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Hendrik Faber
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Maojie Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841 (Republic of, Korea
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Ergang Wang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| |
Collapse
|