1
|
Zhao L, Zhao Y, Kong X, Huang H, Hao L, Wang T, Shi Y, Zhu J, Lu J. Deep insights into the mechanism of isorhamnetin's anti-motion sickness effect based on photoshoproteomics. Food Funct 2024; 15:10300-10315. [PMID: 39344775 DOI: 10.1039/d4fo02761b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Isorhamnetin has recently been found to exhibit a remarkable anti-motion sickness effect, yet the underlying mechanism is still unclear. Herein, network pharmacology was employed to conduct a preliminary analysis on the possible biological processes involved. Results showed that common targets were localized in membranes, mitochondria, and glutamatergic synapses. In particular, protein phosphorylation, protein serine/threonine/tyrosinase activity and signal transduction might play a role in isorhamnetin's anti-motion sickness effect. Thus, mice phosphoproteomics analysis was further performed to explore the phosphorylated protein changes in the motion sickness process. Results showed that differentially phosphorylated proteins have an effect on postsynaptic density, glutamatergic synapses and other sites and are involved in various neurodegenerative disease pathways, endocytic pathways, cAMP signaling pathways and MAPK signaling pathways. Two key differentially phosphorylated proteins in glutamatergic synapses, namely, DLGAP and EPS8, might play key roles in isorhamnetin's anti-motion sickness process. The final molecular experimental verification results from qRT-PCR and western blot analyses indicated that isorhamnetin firstly regulates glutamatergic synapses and then reduces the excitability of the vestibular nucleus through inhibiting the NMDAR1/CaMKII/CREB signaling pathway, ultimately alleviating a series of symptoms of motion sickness in mice. The findings of this study provide valuable insights and a useful theoretical basis for the application of isorhamnetin as a new anti-motion sickness food ingredient.
Collapse
Affiliation(s)
- Li Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| | - Yanyan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| | - Xiaoran Kong
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| | - He Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| | - Limin Hao
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing, 100010, China
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanling Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| |
Collapse
|
2
|
Rowe RK, Schulz P, He P, Mannino GS, Opp MR, Sierks MR. Acute sleep deprivation in mice generates protein pathology consistent with neurodegenerative diseases. Front Neurosci 2024; 18:1436966. [PMID: 39114483 PMCID: PMC11303328 DOI: 10.3389/fnins.2024.1436966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Insufficient or disturbed sleep is strongly associated with adverse health conditions, including various neurodegenerative disorders. While the relationship between sleep and neurodegenerative disease is likely bidirectional, sleep disturbances often predate the onset of other hallmark clinical symptoms. Neuronal waste clearance is significantly more efficient during sleep; thus, disturbed sleep may lead to the accumulation of neuronal proteins that underlie neurodegenerative diseases. Key pathological features of neurodegenerative diseases include an accumulation of misfolded or misprocessed variants of amyloid beta (Aβ), tau, alpha synuclein (α-syn), and TarDNA binding protein 43 (TDP-43). While the presence of fibrillar protein aggregates of these neuronal proteins are characteristic of neurodegenerative diseases, the presence of small soluble toxic oligomeric variants of these different proteins likely precedes the formation of the hallmark aggregates. Methods We hypothesized that sleep deprivation would lead to accumulation of toxic oligomeric variants of Aβ, tau, α-syn, and TDP-43 in brain tissue of wild-type mice. Adult mice were subjected to 6 h of sleep deprivation (zeitgeber 0-6) for 5 consecutive days or were left undisturbed as controls. Following sleep deprivation, brains were collected, and protein pathology was assessed in multiple brain regions using an immunostain panel of reagents selectively targeting neurodegenerative disease-related variants of Aβ, tau, α-syn, and TDP-43. Results Overall, sleep deprivation elevated levels of all protein variants in at least one of the brain regions of interest. The reagent PDTDP, targeting a TDP-43 variant present in Parkinson's disease, was elevated throughout the brain. The cortex, caudoputamen, and corpus callosum brain regions showed the highest accumulation of pathology following sleep deprivation. Discussion These data provide a direct mechanistic link between sleep deprivation, and the hallmark protein pathologies of neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Rachel K. Rowe
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Philip Schulz
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| | - Ping He
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| | - Grant S. Mannino
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Mark R. Opp
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Michael R. Sierks
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
3
|
Zhu K, Chen S, Qin X, Bai W, Hao J, Xu X, Guo H, Bai H, Yang Z, Wang S, Zhao Z, Ji T, Kong D, Zhang W. Exploring the therapeutic potential of cannabidiol for sleep deprivation-induced hyperalgesia. Neuropharmacology 2024; 249:109893. [PMID: 38428482 DOI: 10.1016/j.neuropharm.2024.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Hyperalgesia resulting from sleep deprivation (SD) poses a significant a global public health challenge with limited treatment options. The nucleus accumbens (NAc) plays a crucial role in the modulation of pain and sleep, with its activity regulated by two distinct types of medium spiny neurons (MSNs) expressing dopamine 1 or dopamine 2 (D1-or D2) receptors (referred to as D1-MSNs and D2-MSNs, respectively). However, the specific involvement of the NAc in SD-induced hyperalgesia remains uncertain. Cannabidiol (CBD), a nonpsychoactive phytocannabinoid, has demonstrated analgesic effects in clinical and preclinical studies. Nevertheless, its potency in addressing this particular issue remains to be determined. Here, we report that SD induced a pronounced pronociceptive effect attributed to the heightened intrinsic excitability of D2-MSNs within the NAc in Male C57BL/6N mice. CBD (30 mg/kg, i.p.) exhibited an anti-hyperalgesic effect. CBD significantly improved the thresholds for thermal and mechanical pain and increased wakefulness by reducing delta power. Additionally, CBD inhibited the intrinsic excitability of D2-MSNs both in vitro and in vivo. Bilateral microinjection of the selective D2 receptor antagonist raclopride into the NAc partially reversed the antinociceptive effect of CBD. Thus, these findings strongly suggested that SD activates NAc D2-MSNs, contributing heightened to pain sensitivity. CBD exhibits antinociceptive effects by activating D2R, thereby inhibiting the excitability of D2-MSNs and promoting wakefulness under SD conditions.
Collapse
Affiliation(s)
- Kangsheng Zhu
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China; Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Siruan Chen
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Xia Qin
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Wanjun Bai
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei, 050051, China
| | - Jie Hao
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Xiaolei Xu
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Han Guo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Hui Bai
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Zuxiao Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Sheng Wang
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, Hebei, 050017, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Tengfei Ji
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China.
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
4
|
Han Z, Yang X, Huang S. Sleep deprivation: A risk factor for the pathogenesis and progression of Alzheimer's disease. Heliyon 2024; 10:e28819. [PMID: 38623196 PMCID: PMC11016624 DOI: 10.1016/j.heliyon.2024.e28819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Sleep deprivation refers to an intentional or unintentional reduction in sleep time, resulting in insufficient sleep. It is often caused by sleep disorders, work demands (e.g., night shifts), and study pressure. Sleep deprivation promotes Aβ deposition and tau hyperphosphorylation, which is a risk factor for the pathogenesis and progression of Alzheimer's disease (AD). Recent research has demonstrated the potential involvement of sleep deprivation in both the pathogenesis and progression of AD through glial cell activation, the glial lymphatic system, orexin system, circadian rhythm system, inflammation, and the gut microbiota. Thus, investigating the molecular mechanisms underlying the association between sleep deprivation and AD is crucial, which may contribute to the development of preventive and therapeutic strategies for AD. This review aims to analyze the impact of sleep deprivation on AD, exploring the underlying pathological mechanisms that link sleep deprivation to the initiation and progression of AD, which offers a theoretical foundation for the development of drugs aimed at preventing and treating AD.
Collapse
Affiliation(s)
- Zhengyun Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingmao Yang
- Ji'nan Zhangqiu District Hospital of Traditional Chinese Medicine, Ji'nan, 250200, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Ling Z, Zhou S, Zhou Y, Zhong W, Su Z, Qin Z. Protective role of madecassoside from Centella asiatica against protein L-isoaspartyl methyltransferase deficiency-induced neurodegeneration. Neuropharmacology 2024; 246:109834. [PMID: 38181970 DOI: 10.1016/j.neuropharm.2023.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Protein L-isoaspartyl methyltransferase (PIMT/PCMT1) could repair l-isoaspartate (L-isoAsp) residues formed by deamidation of asparaginyl (Asn) residues or isomerization of aspartyl (Asp) residues in peptides and proteins during aging. Aside from abnormal accumulation of L-isoAsp, PIMT knockout (KO) mice mirrors some neuropathological hallmarks such as anxiety-like behaviors, impaired spatial memory and aberrant synaptic plasticity in the hippocampus of neurodegenerative diseases (NDs), including Alzheimer's disease (AD) and related dementias, and Parkinson's disease (PD). While some reports indicate the neuroprotective effect of madecassoside (MA) as a triterpenoid saponin component of Centella asiatica, its role against NDs-related anxiety and cognitive impairment remains unclear. Therefore, we investigated the effect of MA against anxiety-related behaviors in PIMT deficiency-induced mouse model of NDs. Results obtained from the elevated plus maze (EPM) test revealed that MA treatment alleviated anxiety-like behaviors in PIMT knockout mice. Furthermore, Real-time PCR, electroencephalogram (EEG) recordings, transmission electron microscopy analysis and ELISA were carried out to evaluate the expression of clock genes, sleep and synaptic function, respectively. The PIMT knockout mice were characterized by abnormal clock patterns, sleep disturbance and synaptic dysfunction, which could be improved by MA administration. Collectively, these findings suggest that MA exhibits neuroprotective effects associated with improved circadian rhythms sleep-wake cycle and synaptic plasticity in PIMT deficient mice, which could be translated to ameliorate anxiety-related symptoms and cognitive impairments in NDs.
Collapse
Affiliation(s)
- Zicheng Ling
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sirui Zhou
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yancheng Zhou
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanyu Zhong
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhonghao Su
- Department of Febrile Disease, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhenxia Qin
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
6
|
梁 心, 侯 紫, 陈 蕾, 王 宇, 华 可, 孙 一. [Effect of Sleep Deprivation on the Metabolism of Hippocampal Amino Acids and Monoamine Neurotransmitters in Mice and Their Behaviors]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1139-1145. [PMID: 38162057 PMCID: PMC10752789 DOI: 10.12182/20231160203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Indexed: 01/03/2024]
Abstract
Objective To investigate the effect of sleep deprivation on the metabolism of the hippocampal region in mice. Methods The mice were randomly assigned to three groups, a control group, a 24-h sleep deprivation (SD) group, and a 48-h SD group. Each group had 10 mice. The sleep deprivation model was induced by the modified multiple platform method. The mice's anxiety-like behaviors were assessed with the open field test (OFT) and their depression-like behaviors were assessed with the sucrose preference test (SPT), the forced swimming test (FST), and tail suspension test (TST). High performance liquid chromatography (HPLC) was performed to determine the levels of 6 monoamine neurotransmitters, including 5-hydroxytryptamine (5-HT), norepinephrine (NE), dopamine (DA), gamma-aminobutyric acid (GABA), 5-dihydroxyphenylacetic acid (5-DOPAC), and homovanillic acid (HVA), and 4 amino acids, including glutamic acid (Glu), aspartic acid (Asp), serine (Ser), and taurine (Tau), in the hippocampal region. Immunofluorescence staining was performed to examine the expression of glial cells in the hippocampal region of the mice. The main indicators measured were the levels of monoamine neurotransmitters and amino acids. Results According to the results of the behavioral analysis, in comparison with the findings for the control group, the 24-h SD mice exhibited increased consumption of sucrose in SFT, significantly decreased total immobility time in FST and TST, and increased total distance covered in OFT, while the 48-h SD mice showed decreased consumption of sucrose in SFT, prolonged total immobility time in FST and TST, and decreased total distance covered in OFT. The results of the HPLC analysis of the monoamine neurotransmitter showed that 24-h SD mice had in their hippocampal region increased levels of DA (P<0.001) and NE (P<0.01) and decreased levels of GABA (P<0.05) in comparison with those of the control mice, while their 5-HT, 5-DOPAC, and HVA levels were not significantly different from those of the control mice. In comparison with those of the control mice, the 48-h SD mice had, in their hippocampal region, decreased levels of 5-HT and NE (all P<0.05), decreased DA (P<0.01), and increased level of GABA (P<0.01), while the levels of 5-DOPAC and HAV were not significantly different. The 48-h SD group showed a significant decrease in the levels of Tau and Glu in comparison with those of the 24-h SD group (all P<0.05). According to the results of immunofluorescence assay, there was no significant difference between the control group and the 24-h SD group in the cell count of glial fibrillary acidic protein (GFAP)-positive cells, while a decline in GFAP-positive cells in comparison with that of the control group was observed in the 48-h SD group. Conclusion SD of 24 hours may induce anxiety-like behavioral changes in mice by activating their hippocampal glial cells, upregulating the levels of 5-HT, DA, and NE, and increasing the levels of Glu and Tau in the hippocampal region. SD of 48 hours may induce depression-like behavioral changes in mice by inhibiting the activation of glial cells in the hippocampal region and regulating in the opposite direction the levels of the above-mentioned monoamine neurotransmitters and amino acids in the hippocampal region.
Collapse
Affiliation(s)
- 心 梁
- 蚌埠医学院 第一附属医院 药剂科 (蚌埠 233004)Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- 蚌埠医学院药学院 药剂教研室 (蚌埠 233004)Department of Pharmaceutics, Bengbu Medical College, Bengbu 233004, China
| | - 紫薇 侯
- 蚌埠医学院 第一附属医院 药剂科 (蚌埠 233004)Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 蕾 陈
- 蚌埠医学院 第一附属医院 药剂科 (蚌埠 233004)Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 宇涵 王
- 蚌埠医学院 第一附属医院 药剂科 (蚌埠 233004)Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 可秀 华
- 蚌埠医学院 第一附属医院 药剂科 (蚌埠 233004)Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 一鸣 孙
- 蚌埠医学院 第一附属医院 药剂科 (蚌埠 233004)Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- 蚌埠医学院药学院 药剂教研室 (蚌埠 233004)Department of Pharmaceutics, Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|
7
|
Chen P, Ban W, Wang W, You Y, Yang Z. The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks Sleep 2023; 5:276-294. [PMID: 37218868 DOI: 10.3390/clockssleep5020022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In this narrative review article, we discuss the role of sleep deprivation (SD) in memory processing in rodent models. Numerous studies have examined the effects of SD on memory, with the majority showing that sleep disorders negatively affect memory. Currently, a consensus has not been established on which damage mechanism is the most appropriate. This critical issue in the neuroscience of sleep remains largely unknown. This review article aims to elucidate the mechanisms that underlie the damaging effects of SD on memory. It also proposes a scientific solution that might explain some findings. We have chosen to summarize literature that is both representative and comprehensive, as well as innovative in its approach. We examined the effects of SD on memory, including synaptic plasticity, neuritis, oxidative stress, and neurotransmitters. Results provide valuable insights into the mechanisms by which SD impairs memory function.
Collapse
Affiliation(s)
- Pinqiu Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wenyan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
8
|
Huang Y, Hao J, Yang X, Xu L, Liu Y, Sun Y, Gu X, Zhang W, Ma Z. Pretreatment of the ROS Inhibitor Phenyl-N-tert-butylnitrone Alleviates Sleep Deprivation-Induced Hyperalgesia by Suppressing Microglia Activation and NLRP3 Inflammasome Activity in the Spinal Dorsal Cord. Neurochem Res 2023; 48:305-314. [PMID: 36104611 PMCID: PMC9823061 DOI: 10.1007/s11064-022-03751-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 01/11/2023]
Abstract
Sleep deprivation, a common perioperative period health problem, causes ocular discomfort and affects postsurgical pain. However, the mechanism of sleep deprivation-induced increased pain sensitivity is elusive. This study aims to explore the role of ROS in sleep deprivation (SD)-induced hyperalgesia and the underlying mechanism. A 48-h continuous SD was performed prior to the hind paw incision pain modeling in mice. We measured ROS levels, microglial activation, DNA damage and protein levels of iNOS, NLRP3, p-P65 and P65 in mouse spinal dorsal cord. The involvement of ROS in SD-induced prolongation of postsurgical pain was further confirmed by intrathecal injection of ROS inhibitor, phenyl-N-tert-butylnitrone (PBN). Pretreatment of 48-h SD in mice significantly prolonged postsurgical pain recovery, manifesting as lowered paw withdrawal mechanical threshold and paw withdrawal thermal latency. It caused ROS increase and upregulation of iNOS on both Day 1 and 7 in mouse spinal dorsal cord. In addition, upregulation of NLRP3 and p-P65, microglial activation and DNA damage were observed in mice pretreated with 48-h SD prior to the incision. Notably, intrathecal injection of PBN significantly reversed the harmful effects of SD on postsurgical pain recovery, hyperalgesia, microglial activation and DNA damage via the NF-κB signaling pathway. Collectively, ROS increase is responsible for SD-induced hyperalgesia through activating microglial, triggering DNA damage and enhancing NLRP3 inflammasome activity in the spinal dorsal cord.
Collapse
Affiliation(s)
- Yulin Huang
- Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Jing Hao
- Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Xuli Yang
- Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Li Xu
- Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Yue Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yu'e Sun
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Zhang
- Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China.
| | - Zhengliang Ma
- Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China.
| |
Collapse
|