1
|
Chandrasekaran S, Wang Q, Liu Q, Wang H, Qiu D, Lu H, Liu Y, Bowen C, Huang H. Dynamic regulation of ferroelectric polarization using external stimuli for efficient water splitting and beyond. Chem Soc Rev 2025; 54:2275-2343. [PMID: 39876677 DOI: 10.1039/d4cs01322k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Establishing and regulating the ferroelectric polarization in ferroelectric nano-scale catalysts has been recognized as an emerging strategy to advance water splitting reactions, with the merits of improved surface charge density, high charge transfer rate, increased electronic conductivity, the creation of real active sites, and optimizing the chemisorption energy. As a result, engineering and tailoring the ferroelectric polarization induced internal electric field provides significant opportunities to improve the surface and electronic characteristics of catalysts, thereby enhancing the water splitting reaction kinetics. In this review, an interdisciplinary and comprehensive summary of recent advancements in the construction, characterization, engineering and regulation of the polarization in ferroelectric-based catalysts for water splitting is provided, by exploiting a variety of external stimuli. This review begins with a detailed overview of the classification, benefits, and identification methodologies of the ferroelectric polarization induced internal electric field; this offers significant insights for an in-depth analysis of ferroelectric-based catalysts. Subsequently, we explore the underlying structure-activity relationships for regulating the ferroelectric polarization using a range of external stimuli which include mechanical, magnetic, and thermal fields to achieve efficient water splitting, along with a combination of two or more fields. The review then highlights emerging strategies for multi-scale design and theoretical prediction of the relevant factors to develop highly promising ferroelectric catalysts for efficient water splitting. Finally, we present the challenges and perspectives on the potential research avenues in this fascinating and new field. This review therefore delivers an in-depth examination of the strategies to engineer the ferroelectric polarization for the next-generation of water electrolysis devices, systems and beyond.
Collapse
Affiliation(s)
- Sundaram Chandrasekaran
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical, Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- Guangxi Colleges and Universities Key Laboratory of Surface and Interface Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Qingping Wang
- Department of Mechanical Engineering, University of Bath, Bath, BA2, 7AY, UK.
| | - Qiong Liu
- College of Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Huihui Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical, Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- Guangxi Colleges and Universities Key Laboratory of Surface and Interface Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Dingrong Qiu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical, Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- Guangxi Colleges and Universities Key Laboratory of Surface and Interface Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Huidan Lu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical, Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- Guangxi Colleges and Universities Key Laboratory of Surface and Interface Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Yongping Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical, Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- Guangxi Colleges and Universities Key Laboratory of Surface and Interface Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Chris Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2, 7AY, UK.
| | - Haitao Huang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.
| |
Collapse
|
2
|
Xu B, Ganesan M, Devi RK, Ruan X, Chen W, Lin CC, Chang HT, Lizundia E, An AK, Ravi SK. Hierarchically Promoted Light Harvesting and Management in Photothermal Solar Steam Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2406666. [PMID: 39676402 DOI: 10.1002/adma.202406666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/20/2024] [Indexed: 12/17/2024]
Abstract
Solar steam generation (SSG) presents a promising approach to addressing the global water crisis. Central to SSG is solar photothermal conversion that requires efficient light harvesting and management. Hierarchical structures with multi-scale light management are therefore crucial for SSG. At the molecular and sub-nanoscale levels, materials are fine-tuned for broadband light absorption. Advancing to the nano- and microscale, structures are tailored to enhance light harvesting through internal reflections, scattering, and diverse confinement effects. At the macroscopic level, light capture is optimized through rationally designed device geometries, configurations, and arrangements of solar absorber materials. While the performance of SSG relies on various factors including heat transport, physicochemical interactions at the water/air and material/water interfaces, salt dynamics, etc., efficient light capture and utilization holds a predominant role because sunlight is the sole energy source. This review focuses on the critical, yet often underestimated, role of hierarchical light harvesting/management at different dimensional scales in SSG. By correlating light management with the structure-property relationships, the recent advances in SSG are discussed, shedding light on the current challenges and possible future trends and opportunities in this domain.
Collapse
Affiliation(s)
- Bolin Xu
- School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Muthusankar Ganesan
- School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Ramadhass Keerthika Devi
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, 106344, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Xiaowen Ruan
- School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Weicheng Chen
- School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chun Che Lin
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, 106344, Taiwan
| | - Huan-Tsung Chang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Breast Surgery, Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
3
|
Thangamuniyandi P, Umapathy D, Nagarajan L, Velanganni Arockiam AJ. Blue-LED assisted Photodegradation kinetics of rhodamine-6G dye, enhanced anticancer activity and cleavage of plasmids using Au-ZnO nanocomposite. Heliyon 2025; 11:e41061. [PMID: 39801960 PMCID: PMC11721231 DOI: 10.1016/j.heliyon.2024.e41061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
The plasmonic metal doping on the UV-active metal oxide nanoparticle turns the resultant plasmonic metal-metal oxide (PMMO) into visible light active and upon exogenous illumination the photogenerated energetic charge carriers and the in situ generated reactive oxygen species (ROS, e.g. ·OH and O2 -·) authoritatively enhances its biological and catalytic activity. Herein, a hexagonal rod-shaped ZnO nanoparticles (NP) precursor was prepared using the sol-gel method, which in the presence of varying concentrations of gold (0.005M, 0.01M, and 0.015M) via a greener citrate reduction method afforded a nanocrystalline Au-ZnO nanocomposite. Using which, the visible-light driven photo-degradation kinetics investigation of rhodamine-6G (R6G) dye under blue LED irradiation were carried out. The use of 20 mg 0.015-Au-ZnO completes the degradation of R6G (97.0 %, k = 6.5 X 10-3s-1 at pH 7) within 55 min while 50 mg of 0.015-Au-ZnO catalyst improves the rate of R6G degradation (15 min 97.8 %, k = 14.8 × 10-3 s-1) and it is reusable up to three cycles. The LC-MS spectra of the remains of R6G (after 15 min) identified various low molecular ions (up m/z = 65). Further, the blue-LED assisted anti-cancer studies (MTT assay) using 0.015-Au-ZnO towards human lung cancer cells (A549), breast cancer cells (SKBr3) show high anti-proliferation rate and low cytotoxicity against healthy human embryonic kidney cells (HEK-293) with an IC50 value of 65, 53 and 124 μg/mL respectively. Also, the AO-EB dual staining and DCFH-DA analysis of SKBr3 and A549 cells revealed ROS-mediated cell death via apoptosis. Moreover, plasmid cleavage studies against supercoiled pBR322 DNA result in single-stranded linear DNA without traversing the nicked circular form, suggesting the possible DNA targeting activity of Au-ZnO nanozyme. Thus, the synthesized Au-ZnO nanocomposite shows excellent photocatalytic and biological activity.
Collapse
Affiliation(s)
- Pilavadi Thangamuniyandi
- School of Chemistry, Structural and Photochemistry Laboratory, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Devan Umapathy
- School of Life Sciences, Department of Biochemistry, Molecular Oncology Laboratory, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Loganathan Nagarajan
- School of Chemistry, Structural and Photochemistry Laboratory, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
- UGC Faculty Recharge Programme, UGC, New Delhi, India
| | - Antony Joseph Velanganni Arockiam
- School of Life Sciences, Department of Biochemistry, Molecular Oncology Laboratory, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| |
Collapse
|
4
|
Li L, Wu W. An ultrasensitive angular interrogation metasurface sensor based on the TE mode surface lattice resonance. MICROSYSTEMS & NANOENGINEERING 2025; 11:1. [PMID: 39774138 PMCID: PMC11707350 DOI: 10.1038/s41378-024-00848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/16/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025]
Abstract
The localized surface plasmon resonance metasurface is a research hotspot in the sensing field since it can enhance the light-matter interaction in the nanoscale, but the wavelength sensitivity is far from comparable with that of prism-coupled surface plasmon polariton (SPP). Herein, we propose and demonstrate an ultrasensitive angular interrogation sensor based on the transverse electric mode surface lattice resonance (SLR) mechanism in an all-metal metasurface. In theory, we derive the sensitivity function in detail and emphasize the refraction effect at the air-solution interface, which influences the SLR position and improves the sensitivity performance greatly in the wide-angle. In the measurement, a broadband light source substitutes the single-wavelength laser generally used in traditional angular sensing, and the measured SLR wavelength of broadband illuminant at normal incidence is defined as the single wavelength, avoiding the sensitivity loss from the large angle. The experimental sensitivity can reach 4304.35°/RIU, promoting an order of magnitude compared to those of SPP-sensors. This research provides a novel theory as well as the corresponding crucial approach to achieving ultrasensitive angular sensing.
Collapse
Affiliation(s)
- Liye Li
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Beijing, 100871, PR China
- School of Integrated Circuits, Peking University, Beijing, 100871, PR China
| | - Wengang Wu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Beijing, 100871, PR China.
- School of Integrated Circuits, Peking University, Beijing, 100871, PR China.
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, PR China.
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
5
|
Inchongkol Y, Saothayanun TK, Adpakpang K, Phongsuk N, Impeng S, Kosasang S, Ma N, Horike S, Bureekaew S. Tuning Electronic and Proton Transfer Properties on Amino-Functionalized Co-Based MOF for Efficient Photocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64638-64645. [PMID: 39291924 DOI: 10.1021/acsami.4c10061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Efficient hydrogen (H2) production through photocatalytic water splitting was achieved by using an amino-functionalized azolate/cobalt-based metal-organic framework (MOF). While previous reports highlighted the amino group's role only as a substituent group for enabling light absorption of MOFs in the visible region, our present study revealed its dual role. The amino substituent not only acts as an electron donor to increase the electron availability at the active Co sites but also provides hydrogen-hopping sites within the pore channel, facilitating proton (H+) diffusion along the framework. This dual functionality significantly boosts the performance of this Co-MOF as a hydrogen evolution cocatalyst. When combined with fluorescein and triethylamine as the photosensitizer and sacrificial agent, respectively, the Co-MOF achieved a remarkable H2 production rate of 27 mmol g-1 over 4 h. Notably, this performance surpasses those of benchmark platinum (Pt) and titanium dioxide (TiO2) cocatalysts.
Collapse
Affiliation(s)
- Yollada Inchongkol
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Taya Ko Saothayanun
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Kanyaporn Adpakpang
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Natchaya Phongsuk
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Sarawoot Impeng
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pahonyothin Rd., Khlong Luang, Pathum Thani 12120, Thailand
| | - Soracha Kosasang
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Nattapol Ma
- International Center for Young Scientists (ICYS), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Satoshi Horike
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Sareeya Bureekaew
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
6
|
Yin H, Pu B, Jiang H, He H, Han T, Wang W, Yu C, Wang Z, Li X. Highly Active MXene Quantum Dots/CuSe n-p Plasmonic Heterostructures for Ultrafast Photocatalytic Removal of Cr(VI) under Full Solar Spectrum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24484-24493. [PMID: 39523977 DOI: 10.1021/acs.langmuir.4c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Identifying effective plasmonic photocatalysts exhibiting robust activities across the entire solar spectrum poses a significant challenge. CuSe, with its local surface plasmon resonance (LSPR) effect, has garnered attention as a prospective plasmonic photocatalyst. However, severe charge recombination and insufficient light absorption limit its photocatalytic performance. To enhance the performance, constructing CuSe-based n-p plasmonic semiconductor heterostructures is a potential strategy. MXene quantum dots (MQDs), a kind of n-type plasmonic semiconductor with metallic conductivity and a high LSPR effect, are a promising candidate to couple with p-type CuSe. According to the complementary principle, we designed a 0D/2D MQDs/CuSe n-p plasmonic semiconductor, achieved by wrapping CuSe nanosheets with MQDs. This n-p plasmonic heterostructure exhibits a synergistic effect on an enhanced electronic field, facilitating charge transfer and separation, thereby enhancing charge excitation, carrier migration, and photothermal effect. Furthermore, optimizing the MQD loading content leads to an ultrafast photocatalytic reaction rate, achieving 100% Cr(VI) reduction efficiency within just 60 min with a reaction kinetics of 0.069 min-1, surpassing the performance of bare CuSe. Our work presents a promising approach for developing advanced n-p plasmonic heterostructures based on MQDs for wastewater treatment and other photocatalytic applications.
Collapse
Affiliation(s)
- Hongdie Yin
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
- Sichuan Tianyu Oleochemical Co., Ltd., Luzhou, Sichuan 646300, China
| | - Biao Pu
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Hanmei Jiang
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Huichao He
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Tao Han
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenrong Wang
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chaojun Yu
- Jidong Cement Bishan Co., Ltd., Chongqing 402760, China
| | - Zili Wang
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xingxin Li
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
7
|
Masar M, Ali H, Yasir M, Hanulikova B, Sisman O, Zitnan M, Machovsky M, Velazquez JJ, Galusek D, Kuritka I. Anelosimuseximius bioinspired ZnO nano cobwebs for environmental remediation of drugs and endocrine disruptors from water. CHEMOSPHERE 2024; 365:143327. [PMID: 39271077 DOI: 10.1016/j.chemosphere.2024.143327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The pollution of wastewater with pharmaceuticals and endocrine-disrupting chemicals (EDCs) in populated areas poses a growing threat to humans and ecosystems. To address this serious problem, various one-dimensional (1D) hierarchical ZnO-based nanostructures inspired by Anelosimus eximius cobwebs were developed and successfully grown on a glass substrate through simple hydrothermal synthesis. The nanorods (nr) obtained during primary growth were chemically etched with KOH (ZnOnr-KOH), followed by the secondary growth of nano cobweb-like (ncw) structures using polyethyleneimine (ZnOnr/ncw). These structures were further decorated by the photoreduction of Ag nanoparticles (ZnOnr/ncw/Ag). The feasibility of ZnO-based 1D nanostructures to remove pollutants was demonstrated by degrading commonly prescribed pharmaceutical drugs (diclofenac and carbamazepine) in a miniature cuvette reactor. The photocatalytic activities for drug degradation generally decreased in the order ZnOnr/ncw/Ag > ZnOnr/ncw > ZnOnr-KOH. Additionally, the suitability of the samples for scaling up and practical application was demonstrated by photocatalytic degradation of the hormone estriol (E3) in a flow-through photoreactor. The photocatalytic degradation efficiency of E3 followed the same trend observed for drug degradation, with the complete elimination of the endocrine disruptor achieved by the best-performing ZnOnr/ncw/Ag within 4 h, due to optimized charge transfer and separation at the heterostructure interface.
Collapse
Affiliation(s)
- Milan Masar
- Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001, Zlin, Czech Republic
| | - Hassan Ali
- Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001, Zlin, Czech Republic
| | - Muhammad Yasir
- Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001, Zlin, Czech Republic
| | - Barbora Hanulikova
- Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001, Zlin, Czech Republic
| | - Orhan Sisman
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, SK-911 50, Trenčín, Slovakia
| | - Michal Zitnan
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, SK-911 50, Trenčín, Slovakia
| | - Michal Machovsky
- Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001, Zlin, Czech Republic.
| | - Jose J Velazquez
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, SK-911 50, Trenčín, Slovakia
| | - Dusan Galusek
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, SK-911 50, Trenčín, Slovakia; Join Glass Centre of the IIC SAS, TnU AD, and FChPT STU, Trenčín, Slovakia
| | - Ivo Kuritka
- Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001, Zlin, Czech Republic
| |
Collapse
|
8
|
Bijl M, Lim KRG, Garg S, Nicolas NJ, Visser NL, Aizenberg M, van der Hoeven JES, Aizenberg J. Controlling nanoparticle placement in Au/TiO 2 inverse opal photocatalysts. NANOSCALE 2024; 16:13867-13873. [PMID: 38979601 DOI: 10.1039/d4nr01200c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Gold nanoparticle-loaded titania (Au/TiO2) inverse opals are highly ordered three-dimensional photonic structures with enhanced photocatalytic properties. However, fine control over the placement of the Au nanoparticles in the inverse opal structures remains challenging with traditional preparative methods. Here, we present a multi-component co-assembly strategy to prepare high-quality Au/TiO2 inverse opal films in which Au nanoparticles are either located on, or inside the TiO2 matrix, as verified using electron tomography. We report that Au nanoparticles embedded in the TiO2 support exhibit enhanced thermal and mechanical stability compared to non-embedded nanoparticles that are more prone to both leaching and sintering.
Collapse
Affiliation(s)
- Marianne Bijl
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Kang Rui Garrick Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Sadhya Garg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Natalie J Nicolas
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Nienke L Visser
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands.
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Jessi E S van der Hoeven
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands.
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| |
Collapse
|
9
|
Zhang G, Pan J, Dong X, Li X, Song Z, Liu Y, Liu X, Li Y, Li Q. Construction of atom co-sharing Bi/Bi 4O 5Br 2 nanosheet heterojunction for plasmonic-enhanced visible-light-driven photocatalytic antibacterial activity. Colloids Surf B Biointerfaces 2024; 238:113923. [PMID: 38692173 DOI: 10.1016/j.colsurfb.2024.113923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
The rapid advancement of photodynamic therapy (PDT) antibacterial materials has led to promising alternatives to antibiotics for treating bacterial infections. However, antibacterial drugs have poor light absorption and utilization rates, which limits their practical application. Constructing two-dimensional (2D) heterojunctions from materials with matching photophysical properties has emerged as a highly effective strategy for achieving high-efficiency photo-antibacterial performance. Here, we designed and prepared an atom co-sharing Bi/Bi4O5Br2 nanosheet heterojunction by a simple in situ reduction. This heterojunction material combines outstanding biocompatibility with excellent bactericidal efficiency, which exceeded 90 % against Escherichia coli (a Gram-negative bacterium) and Staphylococcus aureus (a Gram-positive bacterium) under visible light irradiation, around nine-fold higher than that with pure Bi4O5Br2 nanosheets. The results suggest that localized surface plasmon resonance (LSPR) of shared Bi atoms on the Bi4O5Br2 nanosheets promotes light utilization and the separation and transfer of photo-generated charges, thus producing more abundant reactive oxygen species (ROS), which can partake in the PDT antibacterial effect. Our study underscores the potential utility of LSPR-enhanced Bi-based nanosheet heterojunctions for safe and efficient PDT to combat bacterial infections.
Collapse
Affiliation(s)
- Guixue Zhang
- Institute of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Jie Pan
- Department of Stomatology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Xiaoyi Dong
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xue Li
- Department of Pharmacy, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Zhiguo Song
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yan Liu
- Institute of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Xiaomeng Liu
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yongjin Li
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Qiyan Li
- Department of Stomatology, The First People's Hospital of Yunnan Province, Kunming 650032, China.
| |
Collapse
|
10
|
de Barros HR, da Silva RTP, Fernandes R, Toro-Mendoza J, Coluzza I, Temperini MLA, Cordoba de Torresi SI. Unraveling the Nano-Bio Interface Interactions of a Lipase Adsorbed on Gold Nanoparticles under Laser Excitation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5663-5672. [PMID: 38451216 DOI: 10.1021/acs.langmuir.3c02994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The complex nature and structure of biomolecules and nanoparticles and their interactions make it challenging to achieve a deeper understanding of the dynamics at the nano-bio interface of enzymes and plasmonic nanoparticles subjected to light excitation. In this study, circular dichroism (CD) and Raman spectroscopic experiments and molecular dynamics (MD) simulations were used to investigate the potential changes at the nano-bio interface upon plasmonic excitation. Our data showed that photothermal and thermal heating induced distinct changes in the secondary structure of a model nanobioconjugate composed of lipase fromCandida antarcticafraction B (CALB) and gold nanoparticles (AuNPs). The use of a green laser led to a substantial decrease in the α-helix content of the lipase from 66% to 13% and an increase in the β-sheet content from 5% to 31% compared to the initial conformation of the nanobioconjugate. In contrast, the differences under similar thermal heating conditions were only 55% and 11%, respectively. This study revealed important differences related to the enzyme secondary structure, enzyme-nanoparticle interactions, and the stability of the enzyme catalytic triad (Ser105-Asp187-His224), influenced by the instantaneous local temperature increase generated from photothermal heating compared to the slower rate of thermal heating of the bulk. These results provide valuable insights into the interactions between biomolecules and plasmonic nanoparticles induced by photothermal heating, advancing plasmonic biocatalysis and related fields.
Collapse
Affiliation(s)
- Heloise Ribeiro de Barros
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000 São Paulo, Brasil
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 2014, Spain
| | - Rafael Trivella Pacheco da Silva
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000 São Paulo, Brasil
| | - Rafaella Fernandes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000 São Paulo, Brasil
| | - Jhoan Toro-Mendoza
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 2014, Spain
- Centro de Biomedicina Molecular, Instituto Venezolano de Investigaciones Científicas, Carretera Panamericana, Km 11, Altos de Pipe, Caracas 1020, Venezuela
| | - Ivan Coluzza
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Marcia L A Temperini
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000 São Paulo, Brasil
| | - Susana I Cordoba de Torresi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000 São Paulo, Brasil
| |
Collapse
|
11
|
Muhammed MM, Mokkath JH. Plasmon-induced hot carrier distribution in a composite nanosystem: role of the adsorption site. Phys Chem Chem Phys 2024; 26:9037-9050. [PMID: 38440841 DOI: 10.1039/d4cp00322e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The generation of hot carriers (HCs) through the excitation of localized surface plasmon resonance (LSPR) in metal nanostructures is a fascinating phenomenon that fuels both fundamental and applied research. However, gaining insights into HCs at a microscopic level has posed a complex challenge, limiting our ability to create efficient nanoantennas that utilize these energized carriers. In this investigation, we employ real-time time-dependent density functional theory (rt-TDDFT) calculations to examine the creation and distribution of HCs within a model composite system consisting of a silver (Ag) nanodisk and a carbon monoxide (CO) molecule. We find that the creation and distribution of HCs are notably affected by the CO adsorption site. Particularly, when the CO molecule adsorbs onto the hollow site of the Ag nanodisk, it exhibits the highest potential among various composite systems in terms of structural stability, enhanced orbital hybridization, and HC generation and transfer. Utilizing a Gaussian laser pulse adjusted to match the LSPR frequency, we observe a marked buildup of hot electrons and hot holes on the C and O atoms. Conversely, the region encompassing the C-O bond exhibits a depletion of hot electrons and hot holes. We believe that these findings could have significant implications in the field of HC photocatalysis.
Collapse
Affiliation(s)
| | - Junais Habeeb Mokkath
- College of Integrative Studies, Abdullah Al Salem University (AASU), Block 3, Khaldiya, Kuwait.
| |
Collapse
|
12
|
Kozak M, Mazierski P, Żebrowska J, Klimczuk T, Lisowski W, Żak AM, Skowron PM, Zaleska-Medynska A. Detailed Insight into Photocatalytic Inactivation of Pathogenic Bacteria in the Presence of Visible-Light-Active Multicomponent Photocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:409. [PMID: 38470740 DOI: 10.3390/nano14050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The use of heterogeneous photocatalysis in biologically contaminated water purification processes still requires the development of materials active in visible light, preferably in the form of thin films. Herein, we report nanotube structures made of TiO2/Ag2O/Au0, TiO2/Ag2O/PtOx, TiO2/Cu2O/Au0, and TiO2/Cu2O/PtOx obtained via one-step anodic oxidation of the titanium-based alloys (Ti94Ag5Au1, Ti94Cu5Pt1, Ti94Cu5Au1, and Ti94Ag5Pt1) possessing high visible light activity in the inactivation process of methicillin-susceptible S. aureus and other pathogenic bacteria-E. coli, Clostridium sp., and K. oxytoca. In the samples made from Ti-based alloys, metal/metal oxide nanoparticles were formed, which were located on the surface and inside the walls of the NTs. The obtained results showed that oxygen species produced at the surface of irradiated photocatalysts and the presence of copper and silver species in the photoactive layers both contributed to the inactivation of bacteria. Photocatalytic inactivation of E. coli, S. aureus, and Clostridium sp. was confirmed via TEM imaging of bacterium cell destruction and the detection of CO2 as a result of bacteria cell mineralization for the most active sample. These results suggest that the membrane ruptures as a result of the attack of active oxygen species, and then, both the membrane and the contents are mineralized to CO2.
Collapse
Affiliation(s)
- Magda Kozak
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Paweł Mazierski
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Joanna Żebrowska
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Tomasz Klimczuk
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Wojciech Lisowski
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Andrzej M Żak
- Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Adriana Zaleska-Medynska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| |
Collapse
|
13
|
de Jesus RA, de Assis GC, Oliveira RJD, Costa JAS, da Silva CMP, Iqbal HM, Ferreira LFR. Metal/metal oxide nanoparticles: A revolution in the biosynthesis and medical applications. NANO-STRUCTURES & NANO-OBJECTS 2024; 37:101071. [DOI: 10.1016/j.nanoso.2023.101071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
14
|
Singh D, Batoo KM, Hussain S, Kumar A, Aziz QH, Sheri FS, Tariq H, Singh P. Enhancement of the photocatalytic activity of rGO/NiO/Ag nanocomposite for degradation of methylene blue dye. RSC Adv 2024; 14:2429-2438. [PMID: 38223694 PMCID: PMC10784785 DOI: 10.1039/d3ra07000j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024] Open
Abstract
The current study focuses on boosting the photocatalytic ability of reduced graphene oxide (rGO) by decorating the rGO nano-sheets with nickel oxide (NiOx) and silver (Ag) nanomaterials. The developed ternary nanomaterials were investigated using FTIR, XRD, FESEM, TEM, Raman, and UV-vis to evaluate the photo-degradation process. The rGO/NiOx/Ag ternary system showed promising photocatalytic dye degradation under simulated sunlight irradiance. The addition of NiOx and Ag nanomaterials widened the catalytic activity spectrum from the visible region to the UV-region. Besides, these materials hindered the electron-hole recombination, boosting the catalytic activity. The reusability results also clearly showed that the synthesized ternary nanomaterials have good reproducibility and stability for photocatalytic degradation of industrial wastewater.
Collapse
Affiliation(s)
- Durgesh Singh
- Department of Chemistry, School of Chemical Sciences and Technology, Dr.Harisingh Gour Vishwavidyalaya (A Central University) Sagar 470003 Madhya Pradesh India
| | - Khalid Mujasam Batoo
- College of Science, King Saud University P.O. Box-2455 Riyadh 11451 Saudi Arabia
| | - Sajjad Hussain
- Hybrid Materials Center (HMC), Sejong University Seoul 05006 Republic of Korea
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 Republic of Korea
| | - Anjan Kumar
- Department of ECE, GLA University Mathura 281406 India
| | - Qusay Husam Aziz
- Department of Anesthesia Techniques, Al-Noor University College Nineveh Iraq
| | | | - Hayder Tariq
- Department of Pharmacy, Al-Zahrawi University College Karbala Iraq
| | - Parminder Singh
- Chemical Engineering Department, Thapar Institute of Engineering and Technology Patiala India
| |
Collapse
|
15
|
Zhuo Z, Guo K, Luo Y, Yang Q, Wu H, Zeng R, Jiang R, Li J, Wei R, Lian Q, Sha W, Feng Y, Chen H. Targeted modulation of intestinal epithelial regeneration and immune response in ulcerative colitis using dual-targeting bilirubin nanoparticles. Theranostics 2024; 14:528-546. [PMID: 38169633 PMCID: PMC10758062 DOI: 10.7150/thno.87739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Rationale: The therapeutic benefits of bilirubin in the treatment of ulcerative colitis (UC) are considerable, whereas the underlying mechanism of bilirubin on UC remains unclear remains unexplored. In addition, the weak hydrophilicity and toxicity have limited its translational applications. Methods: We have developed a colon dual-targeting nanoparticle, for orally delivering bilirubin through hydrogel encapsulation of hyaluronic acid (HA)-modified poly (lactic-co-glycolic acid) (PLGA) nanoparticles (HA-PLGABilirubin). Confocal microscopy and in vivo imaging were used to evaluate the uptake and the targeted property of HA-PLGABilirubin in UC. Immunohistochemistry, immunofluorescence, and transcriptomic analyses were applied to examine the therapeutic effect and potential mechanism of HA-PLGABilirubin in UC. Results: Our results indicated that HA-PLGAbilirubin can significantly enhance the release of bilirubin at simulated intestinal pH and demonstrate higher cellular uptake in inflammatory macrophages. Moreover, in vivo biodistribution studies revealed high uptake and retention of HA-PLGAbilirubin in inflamed colon tissue of UC mouse model, resulting in effective recovery of intestinal morphology and barrier function. Importantly, HA-PLGAbilirubin exerted potent therapeutic efficacy against ulcerative colitis through modulating the intestinal epithelial/stem cells regeneration, and the improvement of angiogenesis and inflammation. Furthermore, genome-wide RNA-seq analysis revealed transcriptional reprogramming of immune response genes in colon tissue upon HA-PLGAbilirubin treatment in UC mouse model. Conclusion: Overall, our work provides an efficient colon targeted drug delivery system to potentiate the treatment of ulcerative colitis via modulating intestinal epithelium regeneration and immune response in ulcerative colitis.
Collapse
Affiliation(s)
- Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Kehang Guo
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Department of Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qi Yang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Shantou University Medical College, Shantou 515041, China
| | - Rui Jiang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Rui Wei
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qizhou Lian
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, SAR, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Shantou University Medical College, Shantou 515041, China
| | - Yuliang Feng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford Old Road, B4495, Headington, Oxford OX3 7LD, UK
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
16
|
Omar G, Abd Ellah R, Elzayat M, Afifi G, Imam H. Superior removal of hazardous dye using Ag/Au core–shell nanoparticles prepared by laser ablation. OPTICS & LASER TECHNOLOGY 2024; 168:109868. [DOI: 10.1016/j.optlastec.2023.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
17
|
Xiao Y, Zhang T, Zhang H. Recent advances in the peptide-based biosensor designs. Colloids Surf B Biointerfaces 2023; 231:113559. [PMID: 37738870 DOI: 10.1016/j.colsurfb.2023.113559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/09/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Biosensors have rapidly emerged as a high-sensitivity and convenient detection method. Among various types of biosensors, optical and electrochemical are the most commonly used. Conventionally, antibodies have been employed to ensure specific interaction between the transmission material and analytes. However, there has been increasing recognition of peptides as a promising recognition element for biosensor development in recent years. The use of peptides as recognition elements provides high level of specificity, sensitivity, and stability for the detection process. The combination of peptide designs and optical or electrochemical detection methods has significantly improved biosensor efficacy. These advancements present opportunities for developing biosensors with diverse functions that can be used to lay a strong scientific foundation for the development of personalized medicine and various other fields. This paper reviews the recent advancements in the development and application of peptide-based optical and electrochemical biosensors, as well as their prospects as a sensor type.
Collapse
Affiliation(s)
- Yue Xiao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Ting Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
18
|
Yari P, Liang S, Chugh VK, Rezaei B, Mostufa S, Krishna VD, Saha R, Cheeran MCJ, Wang JP, Gómez-Pastora J, Wu K. Nanomaterial-Based Biosensors for SARS-CoV-2 and Future Epidemics. Anal Chem 2023; 95:15419-15449. [PMID: 37826859 DOI: 10.1021/acs.analchem.3c01522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Affiliation(s)
- Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Venkatramana Divana Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Jian-Ping Wang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
19
|
Ibrayev NK, Seliverstova EV, Valiev RR, Kanapina AE, Ishchenko AA, Kulinich AV, Kurten T, Sundholm D. Influence of plasmons on the luminescence properties of solvatochromic merocyanine dyes with different solvatochromism. Phys Chem Chem Phys 2023; 25:22851-22861. [PMID: 37584652 DOI: 10.1039/d3cp03029f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The effect of localized surface plasmon resonance (LSPR) of a system consisting of a highly dipolar merocyanine dye and a silver nanoparticle (NP) was studied experimentally and theoretically. A theoretical model for estimating the fluorescence quantum yield (φfl) using quantum chemical calculations of intramolecular and intermolecular electronic transition rate constants was developed. Calculations show that the main deactivation channels of the lowest excited singlet state of the studied merocyanines are internal conversion (kIC(S1 → S0)) and fluorescence (kr(S1 → S0)). The intersystem-crossing transition has a low probability due to the large energy difference between the singlet and triplet levels. In the presence of plasmonic NPs, the fluorescence quantum yield is increased by a factor of two according to both experiment and computations. The calculated values of φfl, when considering changes in kr(S1 → S0) and the energy-transfer rate constant (ktransfer) from the dye to the NP was also twice as large at distances of 6-8 nm between the NP and the dye molecule. We also found that the LSPR effect can be increased or decreased depending on the value of the dielectric constant (εm) of the environment.
Collapse
Affiliation(s)
- Niyazbek Kh Ibrayev
- Institute of Molecular Nanophotonics, Buketov Karaganda University, 100024 Karaganda, Kazakhstan
| | - Evgeniya V Seliverstova
- Institute of Molecular Nanophotonics, Buketov Karaganda University, 100024 Karaganda, Kazakhstan
| | - Rashid R Valiev
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland.
- Institute of Molecular Nanophotonics, Buketov Karaganda University, 100024 Karaganda, Kazakhstan
| | - Assel E Kanapina
- Institute of Molecular Nanophotonics, Buketov Karaganda University, 100024 Karaganda, Kazakhstan
| | | | | | - Theo Kurten
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Dage Sundholm
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
20
|
Orudzhev FF, Sobola DS, Ramazanov SM, Častková K, Selimov DA, Rabadanova AA, Shuaibov AO, Gulakhmedov RR, Abdurakhmanov MG, Giraev KM. Hydrogen Bond-Induced Activation of Photocatalytic and Piezophotocatalytic Properties in Calcium Nitrate Doped Electrospun PVDF Fibers. Polymers (Basel) 2023; 15:3252. [PMID: 37571146 PMCID: PMC10422511 DOI: 10.3390/polym15153252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, polyvinylidene fluoride (PVDF) fibers doped with hydrated calcium nitrate were prepared using electrospinning. The samples were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), optical spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), Raman, and photoluminescence (PL) spectroscopy. The results are complementary and confirm the presence of chemical hydrogen bonding between the polymer and the dopant. Additionally, there was a significant increase in the proportion of the electroactive polar beta phase from 72 to 86%. It was shown that hydrogen bonds acted as a transport pathway for electron capture by the conjugated salt, leading to more than a three-fold quenching of photoluminescence. Furthermore, the optical bandgap of the composite material narrowed to the range of visible light energies. For the first time, it the addition of the salt reduced the energy of the PVDF exciton by a factor of 17.3, initiating photocatalytic activity. The calcium nitrate-doped PVDF exhibited high photocatalytic activity in the degradation of methylene blue (MB) under both UV and visible light (89 and 44%, respectively). The reaction rate increased by a factor of 2.4 under UV and 3.3 under visible light during piezophotocatalysis. The catalysis experiments proved the efficiency of the membrane design and mechanisms of catalysis are suggested. This study offers insight into the nature of chemical bonds in piezopolymer composites and potential opportunities for their use.
Collapse
Affiliation(s)
- F. F. Orudzhev
- Smart Materials Laboratory, Dagestan State University, St. M. Gadjieva 43-a, 367015 Makhachkala, Russia
| | - D. S. Sobola
- Central European Institute of Technology BUT, Purkyňova 656/123, 61200 Brno, Czech Republic
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, Czech Republic
| | - Sh. M. Ramazanov
- Amirkhanov Institute of Physics, Dagestan Federal Research Center, Russian Academy of Sciences, 367003 Makhachkala, Russia
| | - K. Častková
- Central European Institute of Technology BUT, Purkyňova 656/123, 61200 Brno, Czech Republic
| | - D. A. Selimov
- Smart Materials Laboratory, Dagestan State University, St. M. Gadjieva 43-a, 367015 Makhachkala, Russia
| | - A. A. Rabadanova
- Smart Materials Laboratory, Dagestan State University, St. M. Gadjieva 43-a, 367015 Makhachkala, Russia
| | - A. O. Shuaibov
- Smart Materials Laboratory, Dagestan State University, St. M. Gadjieva 43-a, 367015 Makhachkala, Russia
| | - R. R. Gulakhmedov
- Smart Materials Laboratory, Dagestan State University, St. M. Gadjieva 43-a, 367015 Makhachkala, Russia
| | - M. G. Abdurakhmanov
- Smart Materials Laboratory, Dagestan State University, St. M. Gadjieva 43-a, 367015 Makhachkala, Russia
| | - K. M. Giraev
- Smart Materials Laboratory, Dagestan State University, St. M. Gadjieva 43-a, 367015 Makhachkala, Russia
| |
Collapse
|
21
|
Xin J, Wang J, Yao Y, Wang S, Zhang Z, Yao C. Improved Simulated-Daylight Photodynamic Therapy and Possible Mechanism of Ag-Modified TiO 2 on Melanoma. Int J Mol Sci 2023; 24:ijms24087061. [PMID: 37108223 PMCID: PMC10138875 DOI: 10.3390/ijms24087061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/01/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Simulated-daylight photodynamic therapy (SD-PDT) may be an efficacious strategy for treating melanoma because it can overcome the severe stinging pain, erythema, and edema experienced during conventional PDT. However, the poor daylight response of existing common photosensitizers leads to unsatisfactory anti-tumor therapeutic effects and limits the development of daylight PDT. Hence, in this study, we utilized Ag nanoparticles to adjust the daylight response of TiO2, acquire efficient photochemical activity, and then enhance the anti-tumor therapeutic effect of SD-PDT on melanoma. The synthesized Ag-doped TiO2 showed an optimal enhanced effect compared to Ag-core TiO2. Doping Ag into TiO2 produced a new shallow acceptor impurity level in the energy band structure, which expanded optical absorption in the range of 400-800 nm, and finally improved the photodamage effect of TiO2 under SD irradiation. Plasmonic near-field distributions were enhanced due to the high refractive index of TiO2 at the Ag-TiO2 interface, and then the amount of light captured by TiO2 was increased to induce the enhanced SD-PDT effect of Ag-core TiO2. Hence, Ag could effectively improve the photochemical activity and SD-PDT effect of TiO2 through the change in the energy band structure. Generally, Ag-doped TiO2 is a promising photosensitizer agent for treating melanoma via SD-PDT.
Collapse
Affiliation(s)
- Jing Xin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an 710048, China
| | - Jing Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an 710048, China
| | - Yuanping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an 710048, China
| | - Sijia Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an 710048, China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an 710048, China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an 710048, China
| |
Collapse
|
22
|
Huang Z, Cai X, Zang S, Li Y, Zheng D, Li F. Strong Metal Support Effect of Pt/g-C 3N 4 Photocatalysts for Boosting Photothermal Synergistic Degradation of Benzene. Int J Mol Sci 2023; 24:ijms24076872. [PMID: 37047845 PMCID: PMC10095204 DOI: 10.3390/ijms24076872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Catalysis is the most efficient and economical method for treating volatile organic pollutants (VOCs). Among the many materials that are used in engineering, platinized carbon nitride (Pt/g-C3N4) is an efficient and multifunctional catalyst which has strong light absorption and mass transfer capabilities, which enable it to be used in photocatalysis, thermal catalysis and photothermal synergistic catalysis for the degradation of benzene. In this work, Pt/g-C3N4 was prepared by four precursors for the photothermal synergistic catalytic degradation of benzene, which show different activities, and many tests were carried out to explore the possible reasons for the discrepancy. Among them, the Pt/g-C3N4 prepared from dicyanamide showed the highest activity and could convert benzene (300 ppm, 20 mL·min-1) completely at 162 °C under solar light and 173 °C under visible light. The reaction temperature was reduced by nearly half compared to the traditional thermal catalytic degradation of benzene at about 300 °C.
Collapse
Affiliation(s)
- Zhongcheng Huang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaorong Cai
- Institute of Innovation and Application, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shaohong Zang
- Institute of Innovation and Application, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
- Donghai Laboratory, Zhoushan 316021, China
| | - Yixin Li
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Dandan Zheng
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| | - Fuying Li
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
23
|
Nazir A, Huo P, Wang H, Weiqiang Z, Wan Y. A review on plasmonic-based heterojunction photocatalysts for degradation of organic pollutants in wastewater. JOURNAL OF MATERIALS SCIENCE 2023; 58:6474-6515. [PMID: 37065680 PMCID: PMC10039801 DOI: 10.1007/s10853-023-08391-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
UNLABELLED Organic pollutants in wastewater are the biggest problem facing the world today due to population growth, rapid increase in industrialization, urbanization, and technological advancement. There have been numerous attempts to use conventional wastewater treatment techniques to address the issue of worldwide water contamination. However, conventional wastewater treatment has a number of shortcomings, including high operating costs, low efficiency, difficult preparation, fast recombination of charge carriers, generation of secondary waste, and limited light absorption. Therefore, plasmonic-based heterojunction photocatalysts have attracted much attention as a promising method to reduce organic pollutant problems in water due to their excellent efficiency, low operating cost, ease of fabrication, and environmental friendliness. In addition, plasmonic-based heterojunction photocatalysts contain a local surface plasmon resonance that enhances the performance of photocatalysts by improving light absorption and separation of photoexcited charge carriers. This review summarizes the major plasmonic effects in photocatalysts, including hot electron, local field effect, and photothermal effect, and explains the plasmonic-based heterojunction photocatalysts with five junction systems for the degradation of pollutants. Recent work on the development of plasmonic-based heterojunction photocatalysts for the degradation of various organic pollutants in wastewater is also discussed. Lastly, the conclusions and challenges are briefly described and the direction of future development of heterojunction photocatalysts with plasmonic materials is explored. This review could serve as a guide for the understanding, investigation, and construction of plasmonic-based heterojunction photocatalysts for various organic pollutants degradation. GRAPHICAL ABSTRACT Herein, the plasmonic effects in photocatalysts, such as hot electrons, local field effect, and photothermal effect, as well as the plasmonic-based heterojunction photocatalysts with five junction systems for the degradation of pollutants are explained. Recent work on plasmonic-based heterojunction photocatalysts for the degradation of various organic pollutants in wastewater such as dyes, pesticides, phenols, and antibiotics is discussed. Challenges and future developments are also described.
Collapse
Affiliation(s)
- Ahsan Nazir
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Huijie Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Zhou Weiqiang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Yang Wan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| |
Collapse
|
24
|
Tao Z, Feng J, Yang F, Zhang L, Shen H, Cheng Q, Liu L. Plasmon-enhanced photocatalysis using gold nanoparticles encapsulated in nanoscale molybdenum oxide shell. NANOTECHNOLOGY 2023; 34:155604. [PMID: 36652695 DOI: 10.1088/1361-6528/acb444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Using solar energy to enhance the transformation rate of organic molecules is a promising strategy to advance chemical synthesis and environmental remediation. Plasmonic nanoparticles responsive to sunlight show great promise in the catalysis of chemical reactions. In this work, we used a straightforward wet-chemistry method to synthesize plasmonic octahedral gold nanoparticles (NPs) coated with thin molybdenum oxide (MoO3-x), Au@MoO3-xNPs, which exhibited strong surface plasmon resonance in a broad wavelength range. The synthesized Au@MoO3-xNPs were characterized by UV-vis, SEM, TEM, EDS, XPS, and the electrochemical technique of cyclic voltammetry (CV). The catalytic performance of Au@MoO3-xNPs under visible light irradiation was investigated using the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) as a model reaction. The presence of a thin capping layer of MoO3-xon our Au NPs contributed to the broadening of their range of absorption of visible light, resulting in a stronger intra-particle plasmonic resonance and the modulation of surface energy and electronic state. Accordingly, the kinetics of plasmon photocatalytic transformation of 4-NP to 4-AP was significantly accelerated (by a factor of 8.1) under visible light, compared to uncapped Au NPs in the dark. Our as-synthesized Au@MoO3-xNPs is an example that the range of plasmonic wavelengths of NPs can be effectively broadened by coating them with another plasmon-active (semiconducting) material, which substantially improves their plasmonic photocatalytic performance. Meanwhile, the synthesized Au@MoO3-xNPs can be used to accelerate the transformation of organic molecules under visible light irradiation.
Collapse
Affiliation(s)
- Zizi Tao
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing, Zhejiang Province, 314001, People's Republic of China
| | - Jiyuan Feng
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing, Zhejiang Province, 314001, People's Republic of China
| | - Fan Yang
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing, Zhejiang Province, 314001, People's Republic of China
| | - Liqiu Zhang
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing, Zhejiang Province, 314001, People's Republic of China
| | - Hongxia Shen
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing, Zhejiang Province, 314001, People's Republic of China
| | - Qiong Cheng
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing, Zhejiang Province, 314001, People's Republic of China
| | - Lichun Liu
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing, Zhejiang Province, 314001, People's Republic of China
| |
Collapse
|
25
|
Hong T, Anwer S, Wu J, Deng C, Qian H. Semiconductor-metal-semiconductor TiO2@Au/g-C3N4 interfacial heterojunction for high performance Z-scheme photocatalyst. Front Chem 2022; 10:1050046. [DOI: 10.3389/fchem.2022.1050046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
We designed an edge-sites 2D/0D/2D based TiO2@Au/g-C3N4 Z-scheme photocatalytic system consists of highly exposed (001) TNSs@Au edge-site heterojunction, and the Au/g-C3N4 interfacial heterojunction. The designed photocatalyst was prepared by a facile and controlled hydrothermal synthesis strategy via in-situ nanoclusters-to-nanoparticles deposition technique and programable calcination in N2 atmosphere to get edge-site well-crystalline interface, followed by chemically bonded thin overlay of g-C3N4. Photocatalytic performance of the prepared TNSs@Au/g-C3N4 catalyst was evaluated by the photocatalytic degradation of organic pollutants in water under visible light irradiation. The results obtained from structural and chemical characterization conclude that the inter-facet junction between highly exposed (001) and (101) TNSs surface, and TNSs@Au interfacial heterojunction formed by a direct contact between highly crystalline TNSs and Au, are the key factors to enhance the separation efficiency of photogenerated electrons/holes. On coupling with overlay of g-C3N4 2D NSs synergistically offer tremendous reactive sites for the potential photocatalytic dye degradation in the Z-scheme photocatalyst. Particularly in the designed photocatalyst, Au nanoparticles accumulates and transfer the photo-stimulated electrons originated from anatase TNSs to g-C3N4via semiconductor-metal heterojunction. Because of the large exposed reactive 2D surface, overlay g-C3N4 sheets not only trap photoelectrons, but also provide a potential platform for increased adsorption capacities for organic contaminants. This work establishes a foundation for the development of high-performance Z-scheme photocatalytic systems.
Collapse
|
26
|
Porcu S, Secci F, Ricci PC. Advances in Hybrid Composites for Photocatalytic Applications: A Review. Molecules 2022; 27:molecules27206828. [PMID: 36296421 PMCID: PMC9607189 DOI: 10.3390/molecules27206828] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Heterogeneous photocatalysts have garnered extensive attention as a sustainable way for environmental remediation and energy storage process. Water splitting, solar energy conversion, and pollutant degradation are examples of nowadays applications where semiconductor-based photocatalysts represent a potentially disruptive technology. The exploitation of solar radiation for photocatalysis could generate a strong impact by decreasing the energy demand and simultaneously mitigating the impact of anthropogenic pollutants. However, most of the actual photocatalysts work only on energy radiation in the Near-UV region (<400 nm), and the studies and development of new photocatalysts with high efficiency in the visible range of the spectrum are required. In this regard, hybrid organic/inorganic photocatalysts have emerged as highly potential materials to drastically improve visible photocatalytic efficiency. In this review, we will analyze the state-of-art and the developments of hybrid photocatalysts for energy storage and energy conversion process as well as their application in pollutant degradation and water treatments.
Collapse
Affiliation(s)
- Stefania Porcu
- Department of Physics, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
| | - Francesco Secci
- Department of Chemical and Geological Science, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
| | - Pier Carlo Ricci
- Department of Physics, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
- Correspondence: ; Tel.: +39-070675-4821
| |
Collapse
|