1
|
Luk AMY, Lo CKY, Chiou JA, Ngai CH, Law K, Lau TL, Chen WX, Hui M, Kan CW. Antiviral and Antibacterial 3D-Printed Products Functionalised with Poly(hexamethylene biguanide). Polymers (Basel) 2024; 16:312. [PMID: 38337200 DOI: 10.3390/polym16030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Infection prevention and public health are a vital concern worldwide, especially during pandemics such as COVID-19 and seasonal influenza. Frequent manual disinfection and use of chemical spray coatings at public facilities are the typical measures taken to protect people from coronaviruses and other pathogens. However, limitations of human resources and coating durability, as well as the safety of disinfectants used are the major concerns in society during a pandemic. Non-leachable antimicrobial agent poly(hexamethylene biguanide) (PHMB) was mixed into photocurable liquid resins to produce novel and tailor-made covers for public facilities via digital light processing, which is a popular 3D printing technique for satisfactory printing resolution. Potent efficacies of the 3D-printed plastics were achieved in standard antibacterial assessments against S. aureus, E. coli and K. pneumoniae. A total of 99.9% of Human coronavirus 229E was killed after being in contact with the 3D-printed samples (containing the promising PHMB formulation) for two hours. In an eight-week field test in Hong Kong Wetland Park, antibacterial performances of the specially designed 3D-printed covers analysed by environmental swabbing were also found to be satisfactory. With these remarkable outcomes, antimicrobial products prepared by digital light processing 3D printing can be regarded as a reliable solution to long-term infection prevention and control.
Collapse
Affiliation(s)
- Anson M Y Luk
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Immune Materials Limited, Room 05, Unit 107-109, 1/F, 9 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, N.T., Hong Kong SAR, China
| | - Chris K Y Lo
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Jiachi Amber Chiou
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Chi-Hang Ngai
- University Research Facility in 3D Printing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ki Law
- Immune Materials Limited, Room 05, Unit 107-109, 1/F, 9 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, N.T., Hong Kong SAR, China
| | - Tsz-Long Lau
- Immune Materials Limited, Room 05, Unit 107-109, 1/F, 9 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, N.T., Hong Kong SAR, China
| | - Wan-Xue Chen
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Matthew Hui
- Immune Materials Limited, Room 05, Unit 107-109, 1/F, 9 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, N.T., Hong Kong SAR, China
| | - Chi-Wai Kan
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
2
|
Li M, Liu Y, Gong Y, Yan X, Wang L, Zheng W, Ai H, Zhao Y. Recent advances in nanoantibiotics against multidrug-resistant bacteria. NANOSCALE ADVANCES 2023; 5:6278-6317. [PMID: 38024316 PMCID: PMC10662204 DOI: 10.1039/d3na00530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023]
Abstract
Multidrug-resistant (MDR) bacteria-caused infections have been a major threat to human health. The abuse of conventional antibiotics accelerates the generation of MDR bacteria and makes the situation worse. The emergence of nanomaterials holds great promise for solving this tricky problem due to their multiple antibacterial mechanisms, tunable antibacterial spectra, and low probabilities of inducing drug resistance. In this review, we summarize the mechanism of the generation of drug resistance, and introduce the recently developed nanomaterials for dealing with MDR bacteria via various antibacterial mechanisms. Considering that biosafety and mass production are the major bottlenecks hurdling the commercialization of nanoantibiotics, we introduce the related development in these two aspects. We discuss urgent challenges in this field and future perspectives to promote the development and translation of nanoantibiotics as alternatives against MDR pathogens to traditional antibiotics-based approaches.
Collapse
Affiliation(s)
- Mulan Li
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Youhuan Gong
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Xiaojie Yan
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Le Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- Cannano Tefei Technology, Co. LTD Room 1013, Building D, No. 136 Kaiyuan Avenue, Huangpu District Guangzhou Guangdong Province 510535 P. R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Yuliang Zhao
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences 19B Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|