1
|
Tao H, Wang F, Zhang Z, Min S. An in situ exsolved Cu-based electrocatalyst from an intermetallic Cu 5Si compound for efficient CH 4 electrosynthesis. NANOSCALE 2024; 16:3430-3437. [PMID: 38265128 DOI: 10.1039/d3nr05847f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
A Cu-based electrocatalyst (e-Cu5Si) is developed by in situ exsolving ultrathin SiOx layer-coated CuO/Cu nanoparticles (<100 nm) on the surface of a conductive intermetallic Cu5Si parent. This specially designed e-Cu5Si catalyst exhibits high performance for the CO2 reduction reaction (CO2RR), which affords an excellent CH4 faradaic efficiency (FE) of 49.0% with partial current density of over 140.1 mA cm-2 at -1.2 V versus reversible hydrogen electrode (RHE) in a flow cell, with outstanding stability. The strongly coupled multiphase interfaces among the SiOx layer, CuO/Cu species, and substrate contribute to fast interfacial electron transfer for the CO2RR. Moreover, in situ Raman analysis suggests that the ultrathin SiOx layer simultaneously stabilizes the active Cu1+ species and promotes the protonation of *CO to form *CHxO, thereby greatly improving overall selectivity and activity of CH4 production.
Collapse
Affiliation(s)
- Huanhuan Tao
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China.
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
| | - Fang Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China.
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
| | - Zhengguo Zhang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China.
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
| | - Shixiong Min
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China.
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
| |
Collapse
|
2
|
Meng Z, Wang F, Zhang Z, Min S. A Cu hollow fiber with coaxially grown Bi nanosheet arrays as an integrated gas-penetrable electrode enables high current density and durable formate electrosynthesis. NANOSCALE 2024; 16:2295-2302. [PMID: 38186374 DOI: 10.1039/d3nr05982k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
While high current density formate (HCOO-) electrosynthesis from CO2 reduction has been achieved in a flow cell assembly, the inevitable flooding and salt precipitation of traditional gas-diffusion electrodes (GDEs) severely limit the overall energy efficiency and stability. In this work, an integrated gas-penetrable electrode (GPE) for HCOO- electrosynthesis was developed by coaxially growing vertically aligned high density Bi nanosheet arrays on a porous Cu hollow fiber (Bi NSAs@Cu HF) via controllable galvanic replacement. The interior porous Cu HF serves as a robust gas-penetrable and conductive host for continuously delivering CO2 gas to surface-anchored Bi NSAs, resulting in numerous well-balanced triphase active interfaces for the electrocatalytic CO2 reduction reaction (CO2RR). The most active Bi NSAs@Cu HF GPE exhibits a high HCOO- faradaic efficiency (FEHCOO-) of over 80% in a wide potential window (330 mV) with a linearly increased partial current density (jHCOO-) up to -261.6 mA cm-2 at -1.11 V vs. the reversible hydrogen electrode (RHE). The Bi NSAs@Cu HF GPE also sustains a FEHCOO- of >80% at a high total current density of -300 mA cm-2, corresponding to a jHCOO- of >-240 mA cm-2, for more than 60 h. This work provides new perspectives on designing efficient and durable integrated GPEs for a sustainable CO2RR on a large scale.
Collapse
Affiliation(s)
- Zhe Meng
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
| | - Fang Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
| | - Zhengguo Zhang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
| | - Shixiong Min
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
| |
Collapse
|
3
|
Wang M, Li L, Li Y, Shi X, Ren H, Sun Y, Liu K, Song W, Li H, Wang H, Han M, Wang X, Momo CD, Chen S, Liu L, Liang H. Entropy engineering of La-based perovskite for simultaneous photocatalytic CO 2 reduction and biomass oxidation. Chem Commun (Camb) 2023. [PMID: 37994160 DOI: 10.1039/d3cc04393b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Herein, the high-entropy perovskite, i.e. La(FeCoNiCrMn)O3, was prepared for simultaneous CO2 reduction and biomass upgrading. Based on the synergistic effect between the elements in the high-entropy material, an excellent CO evolution rate of 131.8 μmol g-1 h-1 and a xylonic acid yield of 63.9% were gained.
Collapse
Affiliation(s)
- Mengchen Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Liming Li
- Purification equipment research institute of CSSC, Handan 056027, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yong Li
- CETC Deqing Huaying Electronics Co., Ltd., China
| | - Xuxia Shi
- CETC Deqing Huaying Electronics Co., Ltd., China
| | - Hangxing Ren
- Purification equipment research institute of CSSC, Handan 056027, China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuetao Sun
- Purification equipment research institute of CSSC, Handan 056027, China
| | - Kangning Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Wei Song
- CETC Deqing Huaying Electronics Co., Ltd., China
| | - Huamin Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Haibin Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Mei Han
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Xi Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Christopher Dorma Momo
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Songhua Chen
- College of Chemistry and Material Science, Longyan University, Longyan 364012, China.
| | - Lihua Liu
- College of Innovation & Entrepreneurship, Shanghai Jianqiao University, Shanghai, P. R. China.
| | - Hongyan Liang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
4
|
Liu Z, Lan J, Xia X, Ren T, Wang X, Guo R, Xu W, Pan S. Low-cost flexible textile electrocatalyst for overall water splitting. Chem Commun (Camb) 2023; 59:13883-13886. [PMID: 37933571 DOI: 10.1039/d3cc04506d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Through the braidability of cotton fiber and the richness of surface functional groups, cotton fiber can be woven into any shape, and catalytically active centers can be stably anchored on the fibers. During the electrocatalytic overall water splitting (OWS) process, catalyst shedding and activity reduction can be effectively avoided.
Collapse
Affiliation(s)
- Zhen Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Jiamin Lan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xinnian Xia
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Tong Ren
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xuxu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Rui Guo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia
| | - Weijian Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Shuaijun Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
5
|
Gong S, Yang S, Wang W, Lu R, Wang H, Han X, Wang G, Xie J, Rao D, Wu C, Liu J, Shao S, Lv X. Promoting CO 2 Dynamic Activation via Micro-Engineering Technology for Enhancing Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207808. [PMID: 36942684 DOI: 10.1002/smll.202207808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Optimizing the coordination structure and microscopic reaction environment of isolated metal sites is promising for boosting catalytic activity for electrocatalytic CO2 reduction reaction (CO2 RR) but is still challenging to achieve. Herein, a newly electrostatic induced self-assembly strategy for encapsulating isolated Ni-C3 N1 moiety into hollow nano-reactor as I-Ni SA/NHCRs is developed, which achieves FECO of 94.91% at -0.80 V, the CO partial current density of ≈-15.35 mA cm-2 , superior to that with outer Ni-C2 N2 moiety (94.47%, ≈-12.06 mA cm-2 ), or without hollow structure (92.30%, ≈-5.39 mA cm-2 ), and high FECO of ≈98.41% at 100 mA cm-2 in flow cell. COMSOL multiphysics finite-element method and density functional theory (DFT) calculation illustrate that the excellent activity for I-Ni SA/NHCRs should be attributed to the structure-enhanced kinetics process caused by its hollow nano-reactor structure and unique Ni-C3 N1 moiety, which can enrich electron on Ni sites and positively shift d-band center to the Fermi level to accelerate the adsorption and activation of CO2 molecule and *COOH formation. Meanwhile, this strategy also successfully steers the design of encapsulating isolated iron and cobalt sites into nano-reactor, while I-Ni SA/NHCRs-based zinc-CO2 battery assembled with a peak power density of 2.54 mW cm--2 is achieved.
Collapse
Affiliation(s)
- Shanhe Gong
- Department of Safety Engineering, School of Emergency and Management, Jiangsu University, Zhenjiang, 212013, P. R. China
- Department of Environmental Engineering, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Shaokang Yang
- Department of Materials Science Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Wenbo Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Runqing Lu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Haotan Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xu Han
- Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Guilong Wang
- Department of Environmental Engineering, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jimin Xie
- Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Dewei Rao
- Department of Materials Science Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Chundu Wu
- Department of Safety Engineering, School of Emergency and Management, Jiangsu University, Zhenjiang, 212013, P. R. China
- Department of Environmental Engineering, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jun Liu
- Department of Environmental Engineering, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Shouyan Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Research institute of Suopu, Jiangsu Suopu (Group) Co., Ltd., Zhenjiang, 212006, P. R. China
| | - Xiaomeng Lv
- Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
6
|
Yang C, Hu Y, Li S, Huang Q, Peng J. Self-Supporting Bi-Sb Bimetallic Nanoleaf for Electrochemical Synthesis of Formate by Highly Selective CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6942-6950. [PMID: 36706254 DOI: 10.1021/acsami.2c20593] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrocatalytic reduction of CO2 into valuable fuels and chemical feedstocks in a sustainable and environmentally friendly manner is an ideal way to mitigate climate change and environmental problems. Here, we fabricated a series of self-supporting Bi-Sb bimetallic nanoleaves on carbon paper (CP) by a facile electrodeposition method. The synergistic effect of Bi and Sb components and the change of the electronic structure lead to high formate selectivity and excellent stability in the electrochemical CO2 reduction reaction (CO2RR). Specifically, the Bi-Sb/CP bimetallic electrode achieved a high Faradic efficiency (FEformate, 88.30%) at -0.9 V (vs RHE). The FE of formate remained above 80% in a broad potential range of -0.9 to -1.3 V (vs RHE), while FECO was suppressed below 6%. Density functional theory calculations showed that Bi(012)-Sb reduced the adsorption energy of the *OCHO intermediate and promoted the mass transfer of charges. The optimally adsorbed *OCHO intermediate promoted formate production while inhibiting the CO product pathway, thereby enhancing the selectivity to formate synthesis. Moreover, the CO2RR performance was also investigated in a flow-cell system to evaluate its potential for industrial applications. The bimetallic Bi-Sb catalyst can maintain a steady current density of 160 mA/cm2 at -1.2 V (vs RHE) for 25 h continuous electrolysis. Such excellent stability for formate generation in flow cells has rarely been reported in previous studies. This work offers new insights into the development of bimetallic self-supporting electrodes for CO2 reduction.
Collapse
Affiliation(s)
- Chan Yang
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan750021, P.R. China
| | - Yarong Hu
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan750021, P.R. China
| | - Sanxiu Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan750021, P.R. China
| | - Qun Huang
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan750021, P.R. China
| | - Juan Peng
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan750021, P.R. China
| |
Collapse
|
7
|
Pan H, Wang F, She S, Zhang Z, Min S. Boosting CO 2 electroreduction on a Zn electrode via concurrent surface reconstruction and interfacial surfactant modification. Dalton Trans 2023; 52:556-561. [PMID: 36597855 DOI: 10.1039/d2dt03685a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Herein, we report an effective strategy for improving the electrocatalytic CO2 reduction reaction (CO2RR) performance of a Zn foil electrode via concurrent surface reconstruction and interfacial surfactant modification. The oxide-derived and CTAB-modified Zn electrode (OD-Zn-CTAB) prepared by electrochemically reducing the air-annealed Zn foil electrode in the presence of CTAB exhibits high electrocatalytic activity and selectivity for CO production with a CO partial current density (jCO) of 8.2 mA cm-2 and a CO faradaic efficiency (FECO) of 90% at -1.0 V vs. the reversible hydrogen electrode (RHE), greatly outperforming the pristine Zn foil (FECO = 32.0%; jCO = 0.5 mA cm-2) and OD-Zn (FECO = 77.6%; jCO = 5.0 mA cm-2) obtained by electroreduction of annealed Zn. The greatly enhanced CO2RR performance of OD-Zn-CTAB can be attributed to the increased number of active sites originating from the surface reconstruction and the formation of a favorable CTAB-modified electrode/electrolyte (E/E) interface that can efficiently adsorb and activate CO2 while inhibiting the competitive H2 evolution reaction.
Collapse
Affiliation(s)
- Hui Pan
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
| | - Fang Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
| | - Shixiong She
- College of Chemical Engineering, Qinghai University, Xining 810016, P. R. China
| | - Zhengguo Zhang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
| | - Shixiong Min
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
| |
Collapse
|