1
|
Chen Y, Gonçalves JM, Ferrer Campos R, Villa K. Dual-Energy Integration in Photoresponsive Micro/Nanomotors: From Strategic Design to Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2410901. [PMID: 39716841 DOI: 10.1002/smll.202410901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 12/25/2024]
Abstract
Micro/nanomotors (MNMs) are highly versatile small-scale devices capable of converting external energy inputs into active motion. Among the various energy sources, light stands out due to its abundance and ability to provide spatiotemporal control. However, the effectiveness of light-driven motion in complex environments, such as biological tissues or turbid water, is often limited by light scattering and reduced penetration. To overcome these challenges, recent innovations have integrated light-based actuation with other external stimuli-such as magnetic, acoustic, and electrical fields-broadening the functional range and control of MNMs. This review highlights the cutting-edge developments in dual-energy powered MNMs, emphasizing examples where light is paired with secondary energy sources for enhanced propulsion and task performance. Furthermore, insights are offered into the fabrication techniques, biomedical applications, and the future directions of such hybrid MNMs, while addressing the remaining challenges in this rapidly evolving field.
Collapse
Affiliation(s)
- Yufen Chen
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, Tarragona, E-43007, Spain
| | - João Marcos Gonçalves
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, Tarragona, E-43007, Spain
| | - Rebeca Ferrer Campos
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, Tarragona, E-43007, Spain
| | - Katherine Villa
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, Tarragona, E-43007, Spain
| |
Collapse
|
2
|
Ikram M, Hu C, Zhou Y, Gao Y. Bimetallic Photo-Activated and Steerable Janus Micromotors as Active Microcleaners for Wastewater. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33439-33450. [PMID: 38889105 DOI: 10.1021/acsami.4c04612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Photoactive colloidal motors whose motion can be controlled and even programed via external magnetic fields have significant potential in practical applications extending from biomedical fields to environmental remediation. Herein, we report a "three in one" strategy in a Co/Zn-TPM (3-trimethoxysilyl propyl methacrylate) bimetallic Janus colloidal micromotor (BMT-micromotor) which can be controlled by an optical field, chemical fuel, and magnetic field. The speed of the micromotors can be tuned by light intensity and with the concentration of the chemical fuel of H2O2, while it could be steered and programed through magnetic field due to the presence of Co in the bimetallic part. Finally, the BMT-micromotors were employed to effectively remove rubidium metal ions and organic dyes (methylene blue and rhodamine b). Benefited of excellent mobility, multiple active sites, and hierarchical morphology, the micromotors exhibit excellent adsorption capacity of 103 mg·g-1 to Rb metal ions and high photodegradation efficiency toward organic dyes in the presence of a lower concentration of H2O2. The experimental characterizations and DFT calculations confirmed the strong interaction of Rb metal ions on the surface of BMT-micromotors and the excellent decomposition of H2O2 which enhanced the photodegradation process. We expect the combination of light and fuel sensitivity with magnetic controllability to unlock an excess of opportunities for the application of BMT-micromotors in water treatments.
Collapse
Affiliation(s)
- Muhammad Ikram
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, People's Republic of China
| | - Chao Hu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, People's Republic of China
| | - Yongquan Zhou
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, People's Republic of China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
3
|
Liu W, Chen Y, Liu Y, Song Q, Lu X, Gu Z. Light-driven rGO/Cu 2 + 1O tubular nanomotor with active targeted drug delivery for combination treatment of cancer cells. Mikrochim Acta 2024; 191:404. [PMID: 38888740 DOI: 10.1007/s00604-024-06459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
The unprecedented navigation ability in micro/nanoscale and tailored functionality tunes micro/nanomotors as new target drug delivery systems, open up new horizons for biomedical applications. Herein, we designed a light-driven rGO/Cu2 + 1O tubular nanomotor for active targeting of cancer cells as a drug delivery system. The propulsion performance is greatly enhanced in real cell media (5% glucose cells isotonic solution), attributing to the introduction of oxygen vacancy and reduced graphene oxide (rGO) layer for separating photo-induced electron-hole pairs. The motion speed and direction can be readily modulated. Meanwhile, doxorubicin (DOX) can be loaded quickly on the rGO layer because of π-π bonding effect. The Cu2 + 1O matrix in the tiny robots not only serves as a photocatalyst to generate a chemical concentration gradient as the driving force but also acts as a nanomedicine to kill cancer cells as well. The strong propulsion of light-driven rGO/Cu2 + 1O nanomotors coupled with tiny size endow them with active transmembrane transport, assisting DOX and Cu2 + 1O breaking through the barrier of the cell membrane. Compared with non-powered nanocarrier and free DOX, light-propelled rGO/Cu2 + 1O nanomotors exhibit greater transmembrane transport efficiency and significant therapeutic efficacy. This proof-of-concept nanomotor design presents an innovative approach against tumor, enlarging the list of biomedical applications of light-driven micro/nanomotors to the superficial tissue treatment.
Collapse
Affiliation(s)
- Wenjuan Liu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, Nanjing Tech University, Nanjing, 211816, China.
| | - Yuliang Chen
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Yilin Liu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Qingtao Song
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Xiaolong Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
4
|
Ferreira VRA, Azenha MA. Recent Advances in Light-Driven Semiconductor-Based Micro/Nanomotors: Optimization Strategies and Emerging Applications. Molecules 2024; 29:1154. [PMID: 38474666 DOI: 10.3390/molecules29051154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Micro/nanomotors represent a burgeoning field of research featuring small devices capable of autonomous movement in liquid environments through catalytic reactions and/or external stimuli. This review delves into recent advancements in light-driven semiconductor-based micro/nanomotors (LDSM), focusing on optimized syntheses, enhanced motion mechanisms, and emerging applications in the environmental and biomedical domains. The survey commences with a theoretical introduction to micromotors and their propulsion mechanisms, followed by an exploration of commonly studied LDSM, emphasizing their advantages. Critical properties affecting propulsion, such as surface features, morphology, and size, are presented alongside discussions on external conditions related to light sources and intensity, which are crucial for optimizing the propulsion speed. Each property is accompanied by a theoretical background and conclusions drawn up to 2018. The review further investigates recent adaptations of LDSM, uncovering underlying mechanisms and associated benefits. A brief discussion is included on potential synergistic effects between different external conditions, aiming to enhance efficiency-a relatively underexplored topic. In conclusion, the review outlines emerging applications in biomedicine and environmental monitoring/remediation resulting from recent LDSM research, highlighting the growing significance of this field. The comprehensive exploration of LDSM advancements provides valuable insights for researchers and practitioners seeking to leverage these innovative micro/nanomotors in diverse applications.
Collapse
Affiliation(s)
- Vanessa R A Ferreira
- CIQUP-Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Manuel A Azenha
- CIQUP-Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Dong W, Zhao Z, Liu F, Li P, Wang L, Zhou Y, Shen Y, Lang C, Deng B, Li H, Li D. PVDF Nanofiber Modified with ZnO Nanowires/Polydopamine for the Treatment of Sewage Containing Heavy Metals, Organic Dyes, and Bacteria. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58994-59004. [PMID: 38079597 DOI: 10.1021/acsami.3c12585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
In various countries worldwide, the issue of wastewater contamination poses a significant threat due to its intricate composition of heavy metals, organic dyes, and microorganisms, thereby complicating the purification process. Consequently, researchers have expressed considerable interest in materials capable of eliminating organic, heavy metal, and microbial pollutants. This study focuses on the fabrication of a water purification membrane (PDA/ZnO-NWs/PVDF) with a hierarchical structure and the ability to remove multiple pollutants. The membrane was created by modifying poly(vinylidene fluoride) (PVDF) nanofiber with zinc oxide nanowires (ZnO-NWs) and reinforcing it with polydopamine (PDA). The experimental results demonstrate that the PDA/ZnO-NWs/PVDF membrane exhibits a range of functionalities, including long-lasting superhydrophilicity, Cu(II) adsorption, photocatalytic degradation, and antibacterial ability. The manipulation of the DA synthesis procedure allows for the adjustment of the wettability, adsorption, and photocatalytic and antibacterial activities of the PDA/ZnO-NWs/PVDF composite. According to the Langmuir isotherm, the maximum Cu(II) adsorption capacity of the PDA/ZnO-NWs/PVDF membrane is determined to be 65.75 mg/g, which is significantly higher (27.26 mg/g) than that of the ZnO-NWs/PVDF membrane (38.49 mg/g). The PDA/ZnO-NWs/PVDF composite exhibited a notable degradation capacity toward rhodamine B under natural sunlight, reaching a maximum of 5.97 mg/g. Additionally, the degradation rate achieved during daylight hours was as high as 90.42%. Furthermore, the antibacterial efficacy of the PDA/ZnO-NWs/PVDF composite against both Gram-positive and Gram-negative bacteria approached 100%. This work presents a promising approach for the treatment of wastewater containing various coexisting contaminants.
Collapse
Affiliation(s)
- Wenhao Dong
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Ziqiang Zhao
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Feng Liu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Peihang Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Lanlan Wang
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Yuqi Zhou
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Ying Shen
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Chenhong Lang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bingyao Deng
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Haoxuan Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Dawei Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Yang L, Zhou L, Hong C, Zhu W, Zhao S. Synthesis, optical and photocatalysis property of corn-like ZnO/ZnS heterojunction with a certain lattice defects. J Chem Phys 2023; 159:214703. [PMID: 38038210 DOI: 10.1063/5.0175919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
In order to greatly improve the photocatalytic properties, corn-like ZnO/ZnS heterojunctions with a particle size of about 60-71 nm have been synthesized by the solvothermal method and the subsequent sulfuration process. A declining trend is found for the specific surface area with increasing sulfuration time. The corn-like ZnO/ZnS heterojunctions exhibit good photocatalytic properties. With increasing sulfuration time, the degradation rate increases first and then decreases. The best degradation rate is observed for the heterojunction sulfurated for 90 min. The strong broad luminescence band is extremely beneficial to the absorption of visible light by multiphoton process. In addition, the energy transfer from ZnS to ZnO contributes to charge separation, forming a type-II heterojunction mechanism. After one cycle of photocatalytic process, except that corns become more broken, variation of particle size and shape is very small. The degradation speed of RhB after a second cycle of photocatalytic process is slower than the first one except when using the sample sulfurated for 360 min.
Collapse
Affiliation(s)
- Lei Yang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Lifang Zhou
- College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Chunshui Hong
- Yongzhou Xiangjiang Rare Earths Co., Ltd., Yongzhou 426111, People's Republic of China
| | - Wencai Zhu
- Yongzhou Xiangjiang Rare Earths Co., Ltd., Yongzhou 426111, People's Republic of China
- Ganzhou Zhanhai New Material Technology Co., Ltd., Ganzhou 341000, People's Republic of China
| | - Shihua Zhao
- College of Physics and Electronic Engineering, Hainan Normal University, HaiKou 571158, People's Republic of China
- The Innovation Platform for Academicians of Hainan Province, HaiKou 571158, People's Republic of China
| |
Collapse
|
7
|
Zeng X, Yang M, Liu H, Zhang Z, Hu Y, Shi J, Wang ZH. Light-driven micro/nanomotors in biomedical applications. NANOSCALE 2023; 15:18550-18570. [PMID: 37962424 DOI: 10.1039/d3nr03760f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Nanotechnology brings hope for targeted drug delivery. However, most current drug delivery systems use passive delivery strategies with limited therapeutic efficiency. Over the past two decades, research on micro/nanomotors (MNMs) has flourished in the biomedical field. Compared with other driven methods, light-driven MNMs have the advantages of being reversible, simple to control, clean, and efficient. Under light irradiation, the MNMs can overcome several barriers in the body and show great potential in the treatment of various diseases, such as tumors, and gastrointestinal, cardiovascular and cerebrovascular diseases. Herein, the classification and mechanism of light-driven MNMs are introduced briefly. Subsequently, the applications of light-driven MNMs in overcoming physiological and pathological barriers in the past five years are highlighted. Finally, the future prospects and challenges of light-driven MNMs are discussed as well. This review will provide inspiration and direction for light-driven MNMs to overcome biological barriers in vivo and promote the clinical application of light-driven MNMs in the biomedical field.
Collapse
Affiliation(s)
- Xuejiao Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Mingzhu Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| |
Collapse
|
8
|
Hou Y, Liu F, Nie C, Li Z, Tong M. Boosting Exciton Dissociation and Charge Transfer in Triazole-Based Covalent Organic Frameworks by Increasing the Donor Unit from One to Two for the Efficient Photocatalytic Elimination of Emerging Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11675-11686. [PMID: 37486062 DOI: 10.1021/acs.est.3c03711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As novel photocatalysts, covalent organic frameworks (COFs) have potential for water purification. Insufficient exciton dissociation and low charge mobility in COFs yet restricted their photocatalytic activity. Excitonic dissociation and charge transfer in COFs could be optimized via regulating the donor-acceptor (D-A) interactions through adjusting the number of donor units within COFs, yet relevant research is lacking. By integrating the 1,2,4-triazole or bis-1,2,4-triazole unit with quinone, we fabricated COF-DT (with a single donor unit) and COF-DBT (with double donor units) via a facile sonochemical method and used to decontaminate emerging contaminants. Due to the stronger D-A interactions than COF-DT, the exciton binding energy was lower for COF-DBT, facilitating the intermolecular charge transfer process. The degradation kinetics of tetracycline (model contaminant) by COF-DBT (k = (12.21 ± 1.29) × 10-2 min-1) was higher than that by COF-DT (k = (5.11 ± 0.59) × 10-2 min-1) under visible-light irradiation. COF-DBT could efficiently photodegrade tetracycline under complex water chemistry conditions and four real water samples. Moreover, six other emerging contaminants, both Gram-negative and Gram-positive strains, could also be effectively eliminated by COF-DBT. High tetracycline degradation performance achieved in a continuous-flow system and in five reused cycles in both laboratory and outdoor experiments with sunlight irradiation showed the stability and the potential for the practical application of COF-DBT.
Collapse
Affiliation(s)
- Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Chenyi Nie
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhengmao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
9
|
Vu AT, Mac VH, Nguyen TH, Nguyen TH. Preparation of carnation-like Ag-ZnO composites for enhanced photocatalysis under visible light. NANOTECHNOLOGY 2023; 34:275602. [PMID: 37015211 DOI: 10.1088/1361-6528/acca24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Carnation-like ZnO was synthesized by the facile precipitation method (at room temperature and in 120 min) to decompose dyes in an aqueous medium. The carnation-like ZnO had a stratified porous structure with a size of about 2-3μm, its petals had a smooth surface with a thickness of 5-10 nm and a width of about 300-500 nm. Ag-ZnO composites were synthesized using glucose with the assistance of PVP. The morphology of Ag-ZnO composites was almost unchanged compared to ZnO. Where, the Ag nanoparticles in the size range of 5-15 nm were uniformly dispersed on the ZnO petals, improving the catalytic ability of the composites in tartrazine (TA) degradation. The influence of Ag content on catalytic structure and performance of composite was studied. The 5Ag-ZnO sample had the highest BET surface area and pore volume and the lowest gap energy (Eg) among the as-synthesized samples. The 5Ag-ZnO sample proclaimed the degradation efficiency in 70 min of 97.8% and thekapof 0.031 min-1. The influences of catalyst content, solution pH, and concentration of dye on the photodegradation efficiency of the composite were thoroughly studied. Besides, the photocatalytic activity of the composite was demonstrated by degrading various organic substances and reusability. In addition, it was compared to a metal-semiconductor catalyst of Au-ZnO and semiconductor-semiconductor catalysts of MoS2-ZnO, Cu2O-ZnO, and SiO2-ZnO. The catalytic mechanism under visible light was proposed.
Collapse
Affiliation(s)
- Anh-Tuan Vu
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Van Hung Mac
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Thanh Hung Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Thu Huong Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| |
Collapse
|