1
|
Xu C, Ma C, Zhang W, Wei Y, Yang K, Yuan B. Membrane Fusion Mediated by Cationic Helical Peptide L-MMBen through Phosphatidylglycerol Recruitment. J Phys Chem Lett 2024; 15:11027-11034. [PMID: 39466831 DOI: 10.1021/acs.jpclett.4c02558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Membrane fusion is the basis for many biological processes, which holds promise in biomedical applications including the creation of engineered hybrid cells and cell membrane functionalization. Extensive research efforts, including investigations into DNA zippers and carbon nanotubes, have been dedicated to the development of membrane fusion strategies inspired by natural SNARE proteins; nevertheless, achieving a delicate balance between membrane selectivity and high fusion efficiency through precise molecular engineering remains unclear. In our recent study, we successfully designed L-MMBen, a cationic helical antimicrobial peptide that exhibits remarkable antimicrobial efficacy while demonstrating moderate cytotoxicity. In this work, we demonstrate the effective and selective induction of fusion between phosphatidylglycerol (PG)-containing membranes by L-MMBen. By combining biophysical assays at the single-vesicle level with computer simulations at the molecular level, we discovered that L-MMBen can stably adsorb onto the surface of PG-containing membranes, leading to the formation of stalk structures between vesicles and ultimately resulting in membrane fusion. Furthermore, the occurrence of fusion is attributed to the unique ability of L-MMBen to recruit PG lipids and bridge adjacent vesicles. In contrast, its nonhelical counterpart DL-MMBen was found to lack this capability despite possessing an identical positive charge. These findings present an alternative molecule for achieving selective membrane fusion and provide insights for designing helical peptides with diverse applications.
Collapse
Affiliation(s)
- Cheng Xu
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Chiyun Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wanting Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Yushuang Wei
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| |
Collapse
|
2
|
Peng Z, Iwabuchi S, Izumi K, Takiguchi S, Yamaji M, Fujita S, Suzuki H, Kambara F, Fukasawa G, Cooney A, Di Michele L, Elani Y, Matsuura T, Kawano R. Lipid vesicle-based molecular robots. LAB ON A CHIP 2024; 24:996-1029. [PMID: 38239102 PMCID: PMC10898420 DOI: 10.1039/d3lc00860f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/12/2023] [Indexed: 02/28/2024]
Abstract
A molecular robot, which is a system comprised of one or more molecular machines and computers, can execute sophisticated tasks in many fields that span from nanomedicine to green nanotechnology. The core parts of molecular robots are fairly consistent from system to system and always include (i) a body to encapsulate molecular machines, (ii) sensors to capture signals, (iii) computers to make decisions, and (iv) actuators to perform tasks. This review aims to provide an overview of approaches and considerations to develop molecular robots. We first introduce the basic technologies required for constructing the core parts of molecular robots, describe the recent progress towards achieving higher functionality, and subsequently discuss the current challenges and outlook. We also highlight the applications of molecular robots in sensing biomarkers, signal communications with living cells, and conversion of energy. Although molecular robots are still in their infancy, they will unquestionably initiate massive change in biomedical and environmental technology in the not too distant future.
Collapse
Affiliation(s)
- Zugui Peng
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoji Iwabuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Kayano Izumi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Misa Yamaji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoko Fujita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Harune Suzuki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Fumika Kambara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Genki Fukasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Aileen Cooney
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| |
Collapse
|
3
|
Scheeder A, Brockhoff M, Ward EN, Kaminski Schierle GS, Mela I, Kaminski CF. Molecular Mechanisms of Cationic Fusogenic Liposome Interactions with Bacterial Envelopes. J Am Chem Soc 2023; 145:28240-28250. [PMID: 38085801 PMCID: PMC10755748 DOI: 10.1021/jacs.3c11463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Although fusogenic liposomes offer a promising approach for the delivery of antibiotic payloads across the cell envelope of Gram-negative bacteria, there is still a limited understanding of the individual nanocarrier interactions with the bacterial target. Using super-resolution microscopy, we characterize the interaction dynamics of positively charged fusogenic liposomes with Gram-negative (Escherichia coli) and Gram-positive (Bacillus subtilis) bacteria. The liposomes merge with the outer membrane (OM) of Gram-negative bacteria, while attachment or lipid internalization is observed in Gram-positive cells. Employing total internal reflection fluorescence microscopy, we demonstrated liposome fusion with model supported lipid bilayers. For whole E. coli cells, however, we observed heterogeneous membrane integrations, primarily involving liposome attachment and hemifusion events. With increasing lipopolysaccharide length, the likelihood of full-fusion events was reduced. The integration of artificial lipids into the OM of Gram-negative cells led to membrane destabilization, resulting in decreased bacterial vitality, membrane detachment, and improved codelivery of vancomycin─an effective antibiotic against Gram-positive cells. These findings provide significant insights into the interactions of individual nanocarriers with bacterial envelopes at the single-cell level, uncovering effects that would be missed in bulk measurements. This highlights the importance of conducting single-particle and single-cell investigations to assess the performance of next-generation drug delivery platforms.
Collapse
Affiliation(s)
- Anna Scheeder
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Marius Brockhoff
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Edward N. Ward
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Gabriele S. Kaminski Schierle
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Ioanna Mela
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| |
Collapse
|
4
|
Caliari A, Hanczyc MM, Imai M, Xu J, Yomo T. Quantification of Giant Unilamellar Vesicle Fusion Products by High-Throughput Image Analysis. Int J Mol Sci 2023; 24:ijms24098241. [PMID: 37175944 PMCID: PMC10179211 DOI: 10.3390/ijms24098241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Artificial cells are based on dynamic compartmentalized systems. Thus, remodeling of membrane-bound systems, such as giant unilamellar vesicles, is finding applications beyond biological studies, to engineer cell-mimicking structures. Giant unilamellar vesicle fusion is rapidly becoming an essential experimental step as artificial cells gain prominence in synthetic biology. Several techniques have been developed to accomplish this step, with varying efficiency and selectivity. To date, characterization of vesicle fusion has relied on small samples of giant vesicles, examined either manually or by fluorometric assays on suspensions of small and large unilamellar vesicles. Automation of the detection and characterization of fusion products is now necessary for the screening and optimization of these fusion protocols. To this end, we implemented a fusion assay based on fluorophore colocalization on the membranes and in the lumen of vesicles. Fluorescence colocalization was evaluated within single compartments by image segmentation with minimal user input, allowing the application of the technique to high-throughput screenings. After detection, statistical information on vesicle fluorescence and morphological properties can be summarized and visualized, assessing lipid and content transfer for each object by the correlation coefficient of different fluorescence channels. Using this tool, we report and characterize the unexpected fusogenic activity of sodium chloride on phosphatidylcholine giant vesicles. Lipid transfer in most of the vesicles could be detected after 20 h of incubation, while content exchange only occurred with additional stimuli in around 8% of vesicles.
Collapse
Affiliation(s)
- Adriano Caliari
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, China
- Laboratory for Artificial Biology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Polo Scientifico e Tecnologico Fabio Ferrari, Polo B, Via Sommarive 9, 38123 Povo, Italy
| | - Martin M Hanczyc
- Laboratory for Artificial Biology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Polo Scientifico e Tecnologico Fabio Ferrari, Polo B, Via Sommarive 9, 38123 Povo, Italy
| | - Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai 980-8578, Japan
| | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Tetsuya Yomo
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, China
| |
Collapse
|